Aller au contenu principal
Évaluer
Tick mark Image
Factoriser
Tick mark Image

Problèmes similaires dans la recherche Web

Partager

-\left(-\frac{1}{2}\right)^{2}+\frac{\frac{3}{4}-\frac{1}{2}-\frac{7}{8}}{-\frac{7}{8}}
Calculer 1 à la puissance 4 et obtenir 1.
-\frac{1}{4}+\frac{\frac{3}{4}-\frac{1}{2}-\frac{7}{8}}{-\frac{7}{8}}
Calculer -\frac{1}{2} à la puissance 2 et obtenir \frac{1}{4}.
-\frac{1}{4}+\frac{\frac{3}{4}-\frac{2}{4}-\frac{7}{8}}{-\frac{7}{8}}
Le plus petit dénominateur commun de 4 et 2 est 4. Convertissez \frac{3}{4} et \frac{1}{2} en fractions avec le dénominateur 4.
-\frac{1}{4}+\frac{\frac{3-2}{4}-\frac{7}{8}}{-\frac{7}{8}}
Étant donné que \frac{3}{4} et \frac{2}{4} ont un dénominateur commun, soustrayez-les en soustrayant leur numérateur.
-\frac{1}{4}+\frac{\frac{1}{4}-\frac{7}{8}}{-\frac{7}{8}}
Soustraire 2 de 3 pour obtenir 1.
-\frac{1}{4}+\frac{\frac{2}{8}-\frac{7}{8}}{-\frac{7}{8}}
Le plus petit dénominateur commun de 4 et 8 est 8. Convertissez \frac{1}{4} et \frac{7}{8} en fractions avec le dénominateur 8.
-\frac{1}{4}+\frac{\frac{2-7}{8}}{-\frac{7}{8}}
Étant donné que \frac{2}{8} et \frac{7}{8} ont un dénominateur commun, soustrayez-les en soustrayant leur numérateur.
-\frac{1}{4}+\frac{-\frac{5}{8}}{-\frac{7}{8}}
Soustraire 7 de 2 pour obtenir -5.
-\frac{1}{4}-\frac{5}{8}\left(-\frac{8}{7}\right)
Diviser -\frac{5}{8} par -\frac{7}{8} en multipliant -\frac{5}{8} par la réciproque de -\frac{7}{8}.
-\frac{1}{4}+\frac{-5\left(-8\right)}{8\times 7}
Multiplier -\frac{5}{8} par -\frac{8}{7} en multipliant le numérateur par le numérateur et le dénominateur par le dénominateur.
-\frac{1}{4}+\frac{40}{56}
Effectuer les multiplications dans la fraction \frac{-5\left(-8\right)}{8\times 7}.
-\frac{1}{4}+\frac{5}{7}
Réduire la fraction \frac{40}{56} au maximum en extrayant et en annulant 8.
-\frac{7}{28}+\frac{20}{28}
Le plus petit dénominateur commun de 4 et 7 est 28. Convertissez -\frac{1}{4} et \frac{5}{7} en fractions avec le dénominateur 28.
\frac{-7+20}{28}
Étant donné que -\frac{7}{28} et \frac{20}{28} ont un dénominateur commun, additionnez-les en additionnant leur numérateur.
\frac{13}{28}
Additionner -7 et 20 pour obtenir 13.