Calculer x
x=1
Graphique
Partager
Copié dans le Presse-papiers
a+b=2 ab=-\left(-1\right)=1
Pour résoudre l’équation, factorisez le côté gauche en regroupant la main. Le côté gauche doit être réécrit en tant que -x^{2}+ax+bx-1. Pour rechercher a et b, configurez un système à résoudre.
a=1 b=1
Étant donné que ab est positif, a et b ont le même signe. Étant donné que a+b est positif, a et b sont positives. La seule paire de ce type est la solution système.
\left(-x^{2}+x\right)+\left(x-1\right)
Réécrire -x^{2}+2x-1 en tant qu’\left(-x^{2}+x\right)+\left(x-1\right).
-x\left(x-1\right)+x-1
Factoriser -x dans -x^{2}+x.
\left(x-1\right)\left(-x+1\right)
Factoriser le facteur commun x-1 en utilisant la distributivité.
x=1 x=1
Pour rechercher des solutions d’équation, résolvez x-1=0 et -x+1=0.
-x^{2}+2x-1=0
Toutes les équations de la forme ax^{2}+bx+c=0 peuvent être résolues à l’aide de la formule quadratique : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formule quadratique donne deux solutions, une lorsque ± est une addition et une autre lorsqu’il s’agit d’une soustraction.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Cette équation utilise le format standard : ax^{2}+bx+c=0. Substituez -1 à a, 2 à b et -1 à c dans la formule quadratique, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Calculer le carré de 2.
x=\frac{-2±\sqrt{4+4\left(-1\right)}}{2\left(-1\right)}
Multiplier -4 par -1.
x=\frac{-2±\sqrt{4-4}}{2\left(-1\right)}
Multiplier 4 par -1.
x=\frac{-2±\sqrt{0}}{2\left(-1\right)}
Additionner 4 et -4.
x=-\frac{2}{2\left(-1\right)}
Extraire la racine carrée de 0.
x=-\frac{2}{-2}
Multiplier 2 par -1.
x=1
Diviser -2 par -2.
-x^{2}+2x-1=0
Les équations quadratiques de ce type peuvent être résolues en calculant le carré. Pour ce faire, l’équation doit d’abord utiliser le format x^{2}+bx=c.
-x^{2}+2x-1-\left(-1\right)=-\left(-1\right)
Ajouter 1 aux deux côtés de l’équation.
-x^{2}+2x=-\left(-1\right)
La soustraction de -1 de lui-même donne 0.
-x^{2}+2x=1
Soustraire -1 à 0.
\frac{-x^{2}+2x}{-1}=\frac{1}{-1}
Divisez les deux côtés par -1.
x^{2}+\frac{2}{-1}x=\frac{1}{-1}
La division par -1 annule la multiplication par -1.
x^{2}-2x=\frac{1}{-1}
Diviser 2 par -1.
x^{2}-2x=-1
Diviser 1 par -1.
x^{2}-2x+1=-1+1
Divisez -2, le coefficient de la x terme, par 2 pour récupérer -1. Ajouter ensuite le carré de -1 aux deux côtés de l’équation. Cette étape permet de transformer le côté gauche de l’équation en carré parfait.
x^{2}-2x+1=0
Additionner -1 et 1.
\left(x-1\right)^{2}=0
Factor x^{2}-2x+1. En général, lorsque x^{2}+bx+c est un carré parfait, il peut toujours être factoriser comme \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{0}
Extraire la racine carrée des deux côtés de l’équation.
x-1=0 x-1=0
Simplifier.
x=1 x=1
Ajouter 1 aux deux côtés de l’équation.
x=1
L’équation est désormais résolue. Les solutions sont identiques.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}