Calculer x
x = \frac{4}{3} = 1\frac{1}{3} \approx 1,333333333
Graphique
Partager
Copié dans le Presse-papiers
-\left(2x-7\right)=x+3
La variable x ne peut pas être égale à -3 étant donné que la division par zéro n’est pas définie. Multiplier les deux côtés de l’équation par x+3.
-2x+7=x+3
Pour trouver l’opposé de 2x-7, recherchez l’opposé de chaque terme.
-2x+7-x=3
Soustraire x des deux côtés.
-3x+7=3
Combiner -2x et -x pour obtenir -3x.
-3x=3-7
Soustraire 7 des deux côtés.
-3x=-4
Soustraire 7 de 3 pour obtenir -4.
x=\frac{-4}{-3}
Divisez les deux côtés par -3.
x=\frac{4}{3}
La fraction \frac{-4}{-3} peut être simplifiée en \frac{4}{3} en supprimant le signe négatif du numérateur et du dénominateur.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}