Aller au contenu principal
Calculer x
Tick mark Image
Graphique

Problèmes similaires dans la recherche Web

Partager

x^{2}-2x+1+2x\left(x-1\right)=0
Utilisez la formule du binôme \left(a-b\right)^{2}=a^{2}-2ab+b^{2} pour développer \left(x-1\right)^{2}.
x^{2}-2x+1+2x^{2}-2x=0
Utiliser la distributivité pour multiplier 2x par x-1.
3x^{2}-2x+1-2x=0
Combiner x^{2} et 2x^{2} pour obtenir 3x^{2}.
3x^{2}-4x+1=0
Combiner -2x et -2x pour obtenir -4x.
a+b=-4 ab=3\times 1=3
Pour résoudre l’équation, factorisez le côté gauche en regroupant la main. Le côté gauche doit être réécrit en tant que 3x^{2}+ax+bx+1. Pour rechercher a et b, configurez un système à résoudre.
a=-3 b=-1
Étant donné que ab est positif, a et b ont le même signe. Étant donné que a+b est négatif, a et b sont négatives. La seule paire de ce type est la solution système.
\left(3x^{2}-3x\right)+\left(-x+1\right)
Réécrire 3x^{2}-4x+1 en tant qu’\left(3x^{2}-3x\right)+\left(-x+1\right).
3x\left(x-1\right)-\left(x-1\right)
Factorisez 3x du premier et -1 dans le deuxième groupe.
\left(x-1\right)\left(3x-1\right)
Factoriser le facteur commun x-1 en utilisant la distributivité.
x=1 x=\frac{1}{3}
Pour rechercher des solutions d’équation, résolvez x-1=0 et 3x-1=0.
x^{2}-2x+1+2x\left(x-1\right)=0
Utilisez la formule du binôme \left(a-b\right)^{2}=a^{2}-2ab+b^{2} pour développer \left(x-1\right)^{2}.
x^{2}-2x+1+2x^{2}-2x=0
Utiliser la distributivité pour multiplier 2x par x-1.
3x^{2}-2x+1-2x=0
Combiner x^{2} et 2x^{2} pour obtenir 3x^{2}.
3x^{2}-4x+1=0
Combiner -2x et -2x pour obtenir -4x.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3}}{2\times 3}
Cette équation utilise le format standard : ax^{2}+bx+c=0. Substituez 3 à a, -4 à b et 1 à c dans la formule quadratique, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3}}{2\times 3}
Calculer le carré de -4.
x=\frac{-\left(-4\right)±\sqrt{16-12}}{2\times 3}
Multiplier -4 par 3.
x=\frac{-\left(-4\right)±\sqrt{4}}{2\times 3}
Additionner 16 et -12.
x=\frac{-\left(-4\right)±2}{2\times 3}
Extraire la racine carrée de 4.
x=\frac{4±2}{2\times 3}
L’inverse de -4 est 4.
x=\frac{4±2}{6}
Multiplier 2 par 3.
x=\frac{6}{6}
Résolvez maintenant l’équation x=\frac{4±2}{6} lorsque ± est positif. Additionner 4 et 2.
x=1
Diviser 6 par 6.
x=\frac{2}{6}
Résolvez maintenant l’équation x=\frac{4±2}{6} lorsque ± est négatif. Soustraire 2 à 4.
x=\frac{1}{3}
Réduire la fraction \frac{2}{6} au maximum en extrayant et en annulant 2.
x=1 x=\frac{1}{3}
L’équation est désormais résolue.
x^{2}-2x+1+2x\left(x-1\right)=0
Utilisez la formule du binôme \left(a-b\right)^{2}=a^{2}-2ab+b^{2} pour développer \left(x-1\right)^{2}.
x^{2}-2x+1+2x^{2}-2x=0
Utiliser la distributivité pour multiplier 2x par x-1.
3x^{2}-2x+1-2x=0
Combiner x^{2} et 2x^{2} pour obtenir 3x^{2}.
3x^{2}-4x+1=0
Combiner -2x et -2x pour obtenir -4x.
3x^{2}-4x=-1
Soustraire 1 des deux côtés. Toute valeur soustraite de zéro donne son opposé.
\frac{3x^{2}-4x}{3}=-\frac{1}{3}
Divisez les deux côtés par 3.
x^{2}-\frac{4}{3}x=-\frac{1}{3}
La division par 3 annule la multiplication par 3.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=-\frac{1}{3}+\left(-\frac{2}{3}\right)^{2}
Divisez -\frac{4}{3}, le coefficient de la x terme, par 2 pour récupérer -\frac{2}{3}. Ajouter ensuite le carré de -\frac{2}{3} aux deux côtés de l’équation. Cette étape permet de transformer le côté gauche de l’équation en carré parfait.
x^{2}-\frac{4}{3}x+\frac{4}{9}=-\frac{1}{3}+\frac{4}{9}
Calculer le carré de -\frac{2}{3} en élévant au carré le numérateur et le dénominateur de la fraction.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{1}{9}
Additionner -\frac{1}{3} et \frac{4}{9} en trouvant un dénominateur commun et en additionnant les numérateurs. Réduire ensuite la fraction au maximum si possible.
\left(x-\frac{2}{3}\right)^{2}=\frac{1}{9}
Factor x^{2}-\frac{4}{3}x+\frac{4}{9}. En général, lorsque x^{2}+bx+c est un carré parfait, il peut toujours être factoriser comme \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Extraire la racine carrée des deux côtés de l’équation.
x-\frac{2}{3}=\frac{1}{3} x-\frac{2}{3}=-\frac{1}{3}
Simplifier.
x=1 x=\frac{1}{3}
Ajouter \frac{2}{3} aux deux côtés de l’équation.