Aller au contenu principal
Évaluer
Tick mark Image
Développer
Tick mark Image
Graphique

Problèmes similaires dans la recherche Web

Partager

x\left(-\frac{3}{4}\right)x+2x+\frac{1}{4}\left(-\frac{3}{4}\right)x+\frac{1}{4}\times 2
Appliquez la distributivité en multipliant chaque terme de x+\frac{1}{4} par chaque terme de -\frac{3}{4}x+2.
x^{2}\left(-\frac{3}{4}\right)+2x+\frac{1}{4}\left(-\frac{3}{4}\right)x+\frac{1}{4}\times 2
Multiplier x et x pour obtenir x^{2}.
x^{2}\left(-\frac{3}{4}\right)+2x+\frac{1\left(-3\right)}{4\times 4}x+\frac{1}{4}\times 2
Multiplier \frac{1}{4} par -\frac{3}{4} en multipliant le numérateur par le numérateur et le dénominateur par le dénominateur.
x^{2}\left(-\frac{3}{4}\right)+2x+\frac{-3}{16}x+\frac{1}{4}\times 2
Effectuer les multiplications dans la fraction \frac{1\left(-3\right)}{4\times 4}.
x^{2}\left(-\frac{3}{4}\right)+2x-\frac{3}{16}x+\frac{1}{4}\times 2
La fraction \frac{-3}{16} peut être réécrite comme -\frac{3}{16} en extrayant le signe négatif.
x^{2}\left(-\frac{3}{4}\right)+\frac{29}{16}x+\frac{1}{4}\times 2
Combiner 2x et -\frac{3}{16}x pour obtenir \frac{29}{16}x.
x^{2}\left(-\frac{3}{4}\right)+\frac{29}{16}x+\frac{2}{4}
Multiplier \frac{1}{4} et 2 pour obtenir \frac{2}{4}.
x^{2}\left(-\frac{3}{4}\right)+\frac{29}{16}x+\frac{1}{2}
Réduire la fraction \frac{2}{4} au maximum en extrayant et en annulant 2.
x\left(-\frac{3}{4}\right)x+2x+\frac{1}{4}\left(-\frac{3}{4}\right)x+\frac{1}{4}\times 2
Appliquez la distributivité en multipliant chaque terme de x+\frac{1}{4} par chaque terme de -\frac{3}{4}x+2.
x^{2}\left(-\frac{3}{4}\right)+2x+\frac{1}{4}\left(-\frac{3}{4}\right)x+\frac{1}{4}\times 2
Multiplier x et x pour obtenir x^{2}.
x^{2}\left(-\frac{3}{4}\right)+2x+\frac{1\left(-3\right)}{4\times 4}x+\frac{1}{4}\times 2
Multiplier \frac{1}{4} par -\frac{3}{4} en multipliant le numérateur par le numérateur et le dénominateur par le dénominateur.
x^{2}\left(-\frac{3}{4}\right)+2x+\frac{-3}{16}x+\frac{1}{4}\times 2
Effectuer les multiplications dans la fraction \frac{1\left(-3\right)}{4\times 4}.
x^{2}\left(-\frac{3}{4}\right)+2x-\frac{3}{16}x+\frac{1}{4}\times 2
La fraction \frac{-3}{16} peut être réécrite comme -\frac{3}{16} en extrayant le signe négatif.
x^{2}\left(-\frac{3}{4}\right)+\frac{29}{16}x+\frac{1}{4}\times 2
Combiner 2x et -\frac{3}{16}x pour obtenir \frac{29}{16}x.
x^{2}\left(-\frac{3}{4}\right)+\frac{29}{16}x+\frac{2}{4}
Multiplier \frac{1}{4} et 2 pour obtenir \frac{2}{4}.
x^{2}\left(-\frac{3}{4}\right)+\frac{29}{16}x+\frac{1}{2}
Réduire la fraction \frac{2}{4} au maximum en extrayant et en annulant 2.