Évaluer
-6+192000000i
Partager
Copié dans le Presse-papiers
\left(3\times 1-5^{1}-20^{6}i^{11}\right)\times 3
Calculer b à la puissance 0 et obtenir 1.
\left(3-5^{1}-20^{6}i^{11}\right)\times 3
Multiplier 3 et 1 pour obtenir 3.
\left(3-5-20^{6}i^{11}\right)\times 3
Calculer 5 à la puissance 1 et obtenir 5.
\left(-2-20^{6}i^{11}\right)\times 3
Soustraire 5 de 3 pour obtenir -2.
\left(-2-64000000i^{11}\right)\times 3
Calculer 20 à la puissance 6 et obtenir 64000000.
\left(-2-64000000\left(-i\right)\right)\times 3
Calculer i à la puissance 11 et obtenir -i.
\left(-2-\left(-64000000i\right)\right)\times 3
Multiplier 64000000 et -i pour obtenir -64000000i.
\left(-2+64000000i\right)\times 3
L’inverse de -64000000i est 64000000i.
-6+192000000i
Multiplier -2+64000000i et 3 pour obtenir -6+192000000i.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}