Aller au contenu principal
Évaluer
Tick mark Image
Factoriser
Tick mark Image
Graphique

Problèmes similaires dans la recherche Web

Partager

\frac{\frac{2\left(x+2\right)}{x+2}-\frac{8}{x+2}}{\frac{x^{2}-4x+4}{x^{2}-4}}
Pour ajouter ou soustraire des expressions, développez-les pour rendre leurs dénominateurs identiques. Multiplier 2 par \frac{x+2}{x+2}.
\frac{\frac{2\left(x+2\right)-8}{x+2}}{\frac{x^{2}-4x+4}{x^{2}-4}}
Étant donné que \frac{2\left(x+2\right)}{x+2} et \frac{8}{x+2} ont un dénominateur commun, soustrayez-les en soustrayant leur numérateur.
\frac{\frac{2x+4-8}{x+2}}{\frac{x^{2}-4x+4}{x^{2}-4}}
Effectuez les multiplications dans 2\left(x+2\right)-8.
\frac{\frac{2x-4}{x+2}}{\frac{x^{2}-4x+4}{x^{2}-4}}
Combiner des termes semblables dans 2x+4-8.
\frac{\frac{2x-4}{x+2}}{\frac{\left(x-2\right)^{2}}{\left(x-2\right)\left(x+2\right)}}
Mettez en facteur les expressions qui ne sont pas encore factorisées dans \frac{x^{2}-4x+4}{x^{2}-4}.
\frac{\frac{2x-4}{x+2}}{\frac{x-2}{x+2}}
Annuler x-2 dans le numérateur et le dénominateur.
\frac{\left(2x-4\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}
Diviser \frac{2x-4}{x+2} par \frac{x-2}{x+2} en multipliant \frac{2x-4}{x+2} par la réciproque de \frac{x-2}{x+2}.
\frac{2x-4}{x-2}
Annuler x+2 dans le numérateur et le dénominateur.
\frac{2\left(x-2\right)}{x-2}
Mettez en facteur les expressions qui ne sont pas encore factorisées.
2
Annuler x-2 dans le numérateur et le dénominateur.