Évaluer
\frac{46}{3}\approx 15,333333333
Factoriser
\frac{2 \cdot 23}{3} = 15\frac{1}{3} = 15,333333333333334
Partager
Copié dans le Presse-papiers
9+\frac{2\times 4+1}{4}\left(-\frac{2}{3}\right)^{2}+4-2^{2}\left(-\frac{1}{3}\right)
Calculer -3 à la puissance 2 et obtenir 9.
9+\frac{8+1}{4}\left(-\frac{2}{3}\right)^{2}+4-2^{2}\left(-\frac{1}{3}\right)
Multiplier 2 et 4 pour obtenir 8.
9+\frac{9}{4}\left(-\frac{2}{3}\right)^{2}+4-2^{2}\left(-\frac{1}{3}\right)
Additionner 8 et 1 pour obtenir 9.
9+\frac{9}{4}\times \frac{4}{9}+4-2^{2}\left(-\frac{1}{3}\right)
Calculer -\frac{2}{3} à la puissance 2 et obtenir \frac{4}{9}.
9+1+4-2^{2}\left(-\frac{1}{3}\right)
Annuler \frac{9}{4} et sa réciproque, \frac{4}{9}.
10+4-2^{2}\left(-\frac{1}{3}\right)
Additionner 9 et 1 pour obtenir 10.
14-2^{2}\left(-\frac{1}{3}\right)
Additionner 10 et 4 pour obtenir 14.
14-4\left(-\frac{1}{3}\right)
Calculer 2 à la puissance 2 et obtenir 4.
14-\frac{4\left(-1\right)}{3}
Exprimer 4\left(-\frac{1}{3}\right) sous la forme d’une fraction seule.
14-\frac{-4}{3}
Multiplier 4 et -1 pour obtenir -4.
14-\left(-\frac{4}{3}\right)
La fraction \frac{-4}{3} peut être réécrite comme -\frac{4}{3} en extrayant le signe négatif.
14+\frac{4}{3}
L’inverse de -\frac{4}{3} est \frac{4}{3}.
\frac{42}{3}+\frac{4}{3}
Convertir 14 en fraction \frac{42}{3}.
\frac{42+4}{3}
Étant donné que \frac{42}{3} et \frac{4}{3} ont un dénominateur commun, additionnez-les en additionnant leur numérateur.
\frac{46}{3}
Additionner 42 et 4 pour obtenir 46.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}