Aller au contenu principal
Calculer x
Tick mark Image
Graphique

Problèmes similaires dans la recherche Web

Partager

x^{2}-5x+3=8
Toutes les équations de la forme ax^{2}+bx+c=0 peuvent être résolues à l’aide de la formule quadratique : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formule quadratique donne deux solutions, une lorsque ± est une addition et une autre lorsqu’il s’agit d’une soustraction.
x^{2}-5x+3-8=8-8
Soustraire 8 des deux côtés de l’équation.
x^{2}-5x+3-8=0
La soustraction de 8 de lui-même donne 0.
x^{2}-5x-5=0
Soustraire 8 à 3.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-5\right)}}{2}
Cette équation utilise le format standard : ax^{2}+bx+c=0. Substituez 1 à a, -5 à b et -5 à c dans la formule quadratique, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-5\right)}}{2}
Calculer le carré de -5.
x=\frac{-\left(-5\right)±\sqrt{25+20}}{2}
Multiplier -4 par -5.
x=\frac{-\left(-5\right)±\sqrt{45}}{2}
Additionner 25 et 20.
x=\frac{-\left(-5\right)±3\sqrt{5}}{2}
Extraire la racine carrée de 45.
x=\frac{5±3\sqrt{5}}{2}
L’inverse de -5 est 5.
x=\frac{3\sqrt{5}+5}{2}
Résolvez maintenant l’équation x=\frac{5±3\sqrt{5}}{2} lorsque ± est positif. Additionner 5 et 3\sqrt{5}.
x=\frac{5-3\sqrt{5}}{2}
Résolvez maintenant l’équation x=\frac{5±3\sqrt{5}}{2} lorsque ± est négatif. Soustraire 3\sqrt{5} à 5.
x=\frac{3\sqrt{5}+5}{2} x=\frac{5-3\sqrt{5}}{2}
L’équation est désormais résolue.
x^{2}-5x+3=8
Les équations quadratiques de ce type peuvent être résolues en calculant le carré. Pour ce faire, l’équation doit d’abord utiliser le format x^{2}+bx=c.
x^{2}-5x+3-3=8-3
Soustraire 3 des deux côtés de l’équation.
x^{2}-5x=8-3
La soustraction de 3 de lui-même donne 0.
x^{2}-5x=5
Soustraire 3 à 8.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=5+\left(-\frac{5}{2}\right)^{2}
Divisez -5, le coefficient de la x terme, par 2 pour récupérer -\frac{5}{2}. Ajouter ensuite le carré de -\frac{5}{2} aux deux côtés de l’équation. Cette étape permet de transformer le côté gauche de l’équation en carré parfait.
x^{2}-5x+\frac{25}{4}=5+\frac{25}{4}
Calculer le carré de -\frac{5}{2} en élévant au carré le numérateur et le dénominateur de la fraction.
x^{2}-5x+\frac{25}{4}=\frac{45}{4}
Additionner 5 et \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{45}{4}
Factor x^{2}-5x+\frac{25}{4}. En général, lorsque x^{2}+bx+c est un carré parfait, il peut toujours être factoriser comme \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{45}{4}}
Extraire la racine carrée des deux côtés de l’équation.
x-\frac{5}{2}=\frac{3\sqrt{5}}{2} x-\frac{5}{2}=-\frac{3\sqrt{5}}{2}
Simplifier.
x=\frac{3\sqrt{5}+5}{2} x=\frac{5-3\sqrt{5}}{2}
Ajouter \frac{5}{2} aux deux côtés de l’équation.