Calculer x (solution complexe)
\left\{\begin{matrix}x=-\frac{y\lambda -y-3\lambda ^{2}+\lambda -4}{\lambda ^{2}+1}\text{, }&\lambda \neq -i\text{ and }\lambda \neq i\\x\in \mathrm{C}\text{, }&\left(\lambda =i\text{ or }\lambda =-i\right)\text{ and }y=-1\end{matrix}\right,
Calculer y (solution complexe)
\left\{\begin{matrix}y=-\frac{x\lambda ^{2}+x-3\lambda ^{2}+\lambda -4}{\lambda -1}\text{, }&\lambda \neq 1\\y\in \mathrm{C}\text{, }&x=3\text{ and }\lambda =1\end{matrix}\right,
Calculer x
x=-\frac{y\lambda -y-3\lambda ^{2}+\lambda -4}{\lambda ^{2}+1}
Calculer y
\left\{\begin{matrix}y=-\frac{x\lambda ^{2}+x-3\lambda ^{2}+\lambda -4}{\lambda -1}\text{, }&\lambda \neq 1\\y\in \mathrm{R}\text{, }&x=3\text{ and }\lambda =1\end{matrix}\right,
Graphique
Partager
Copié dans le Presse-papiers
\lambda ^{2}x+x+\left(\lambda -1\right)y-3\lambda ^{2}+\lambda -4=0
Utiliser la distributivité pour multiplier \lambda ^{2}+1 par x.
\lambda ^{2}x+x+\lambda y-y-3\lambda ^{2}+\lambda -4=0
Utiliser la distributivité pour multiplier \lambda -1 par y.
\lambda ^{2}x+x-y-3\lambda ^{2}+\lambda -4=-\lambda y
Soustraire \lambda y des deux côtés. Toute valeur soustraite de zéro donne son opposé.
\lambda ^{2}x+x-3\lambda ^{2}+\lambda -4=-\lambda y+y
Ajouter y aux deux côtés.
\lambda ^{2}x+x+\lambda -4=-\lambda y+y+3\lambda ^{2}
Ajouter 3\lambda ^{2} aux deux côtés.
\lambda ^{2}x+x-4=-\lambda y+y+3\lambda ^{2}-\lambda
Soustraire \lambda des deux côtés.
\lambda ^{2}x+x=-\lambda y+y+3\lambda ^{2}-\lambda +4
Ajouter 4 aux deux côtés.
x\lambda ^{2}+x=-y\lambda +y+3\lambda ^{2}-\lambda +4
Réorganiser les termes.
\left(\lambda ^{2}+1\right)x=-y\lambda +y+3\lambda ^{2}-\lambda +4
Combiner tous les termes contenant x.
\left(\lambda ^{2}+1\right)x=4-\lambda +3\lambda ^{2}+y-y\lambda
L’équation utilise le format standard.
\frac{\left(\lambda ^{2}+1\right)x}{\lambda ^{2}+1}=\frac{4-\lambda +3\lambda ^{2}+y-y\lambda }{\lambda ^{2}+1}
Divisez les deux côtés par \lambda ^{2}+1.
x=\frac{4-\lambda +3\lambda ^{2}+y-y\lambda }{\lambda ^{2}+1}
La division par \lambda ^{2}+1 annule la multiplication par \lambda ^{2}+1.
\lambda ^{2}x+x+\left(\lambda -1\right)y-3\lambda ^{2}+\lambda -4=0
Utiliser la distributivité pour multiplier \lambda ^{2}+1 par x.
\lambda ^{2}x+x+\lambda y-y-3\lambda ^{2}+\lambda -4=0
Utiliser la distributivité pour multiplier \lambda -1 par y.
x+\lambda y-y-3\lambda ^{2}+\lambda -4=-\lambda ^{2}x
Soustraire \lambda ^{2}x des deux côtés. Toute valeur soustraite de zéro donne son opposé.
\lambda y-y-3\lambda ^{2}+\lambda -4=-\lambda ^{2}x-x
Soustraire x des deux côtés.
\lambda y-y+\lambda -4=-\lambda ^{2}x-x+3\lambda ^{2}
Ajouter 3\lambda ^{2} aux deux côtés.
\lambda y-y-4=-\lambda ^{2}x-x+3\lambda ^{2}-\lambda
Soustraire \lambda des deux côtés.
\lambda y-y=-\lambda ^{2}x-x+3\lambda ^{2}-\lambda +4
Ajouter 4 aux deux côtés.
y\lambda -y=-x\lambda ^{2}-x+3\lambda ^{2}-\lambda +4
Réorganiser les termes.
\left(\lambda -1\right)y=-x\lambda ^{2}-x+3\lambda ^{2}-\lambda +4
Combiner tous les termes contenant y.
\left(\lambda -1\right)y=4-\lambda +3\lambda ^{2}-x-x\lambda ^{2}
L’équation utilise le format standard.
\frac{\left(\lambda -1\right)y}{\lambda -1}=\frac{4-\lambda +3\lambda ^{2}-x-x\lambda ^{2}}{\lambda -1}
Divisez les deux côtés par \lambda -1.
y=\frac{4-\lambda +3\lambda ^{2}-x-x\lambda ^{2}}{\lambda -1}
La division par \lambda -1 annule la multiplication par \lambda -1.
\lambda ^{2}x+x+\left(\lambda -1\right)y-3\lambda ^{2}+\lambda -4=0
Utiliser la distributivité pour multiplier \lambda ^{2}+1 par x.
\lambda ^{2}x+x+\lambda y-y-3\lambda ^{2}+\lambda -4=0
Utiliser la distributivité pour multiplier \lambda -1 par y.
\lambda ^{2}x+x-y-3\lambda ^{2}+\lambda -4=-\lambda y
Soustraire \lambda y des deux côtés. Toute valeur soustraite de zéro donne son opposé.
\lambda ^{2}x+x-3\lambda ^{2}+\lambda -4=-\lambda y+y
Ajouter y aux deux côtés.
\lambda ^{2}x+x+\lambda -4=-\lambda y+y+3\lambda ^{2}
Ajouter 3\lambda ^{2} aux deux côtés.
\lambda ^{2}x+x-4=-\lambda y+y+3\lambda ^{2}-\lambda
Soustraire \lambda des deux côtés.
\lambda ^{2}x+x=-\lambda y+y+3\lambda ^{2}-\lambda +4
Ajouter 4 aux deux côtés.
x\lambda ^{2}+x=-y\lambda +y+3\lambda ^{2}-\lambda +4
Réorganiser les termes.
\left(\lambda ^{2}+1\right)x=-y\lambda +y+3\lambda ^{2}-\lambda +4
Combiner tous les termes contenant x.
\left(\lambda ^{2}+1\right)x=4-\lambda +3\lambda ^{2}+y-y\lambda
L’équation utilise le format standard.
\frac{\left(\lambda ^{2}+1\right)x}{\lambda ^{2}+1}=\frac{4-\lambda +3\lambda ^{2}+y-y\lambda }{\lambda ^{2}+1}
Divisez les deux côtés par \lambda ^{2}+1.
x=\frac{4-\lambda +3\lambda ^{2}+y-y\lambda }{\lambda ^{2}+1}
La division par \lambda ^{2}+1 annule la multiplication par \lambda ^{2}+1.
\lambda ^{2}x+x+\left(\lambda -1\right)y-3\lambda ^{2}+\lambda -4=0
Utiliser la distributivité pour multiplier \lambda ^{2}+1 par x.
\lambda ^{2}x+x+\lambda y-y-3\lambda ^{2}+\lambda -4=0
Utiliser la distributivité pour multiplier \lambda -1 par y.
x+\lambda y-y-3\lambda ^{2}+\lambda -4=-\lambda ^{2}x
Soustraire \lambda ^{2}x des deux côtés. Toute valeur soustraite de zéro donne son opposé.
\lambda y-y-3\lambda ^{2}+\lambda -4=-\lambda ^{2}x-x
Soustraire x des deux côtés.
\lambda y-y+\lambda -4=-\lambda ^{2}x-x+3\lambda ^{2}
Ajouter 3\lambda ^{2} aux deux côtés.
\lambda y-y-4=-\lambda ^{2}x-x+3\lambda ^{2}-\lambda
Soustraire \lambda des deux côtés.
\lambda y-y=-\lambda ^{2}x-x+3\lambda ^{2}-\lambda +4
Ajouter 4 aux deux côtés.
y\lambda -y=-x\lambda ^{2}-x+3\lambda ^{2}-\lambda +4
Réorganiser les termes.
\left(\lambda -1\right)y=-x\lambda ^{2}-x+3\lambda ^{2}-\lambda +4
Combiner tous les termes contenant y.
\left(\lambda -1\right)y=4-\lambda +3\lambda ^{2}-x-x\lambda ^{2}
L’équation utilise le format standard.
\frac{\left(\lambda -1\right)y}{\lambda -1}=\frac{4-\lambda +3\lambda ^{2}-x-x\lambda ^{2}}{\lambda -1}
Divisez les deux côtés par \lambda -1.
y=\frac{4-\lambda +3\lambda ^{2}-x-x\lambda ^{2}}{\lambda -1}
La division par \lambda -1 annule la multiplication par \lambda -1.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}