Évaluer
\frac{25}{24}\approx 1,041666667
Factoriser
\frac{5 ^ {2}}{2 ^ {3} \cdot 3} = 1\frac{1}{24} = 1,0416666666666667
Quiz
Arithmetic
5 problèmes semblables à :
| \frac { 5 } { 6 } | - \frac { 1 } { 2 } + \frac { 17 } { 24 }
Partager
Copié dans le Presse-papiers
\frac{5}{6}-\frac{1}{2}+\frac{17}{24}
La valeur absolue d’un nombre réel a est a lorsque a\geq 0, ou -a lorsque a<0. La valeur absolue de \frac{5}{6} est \frac{5}{6}.
\frac{5}{6}-\frac{3}{6}+\frac{17}{24}
Le plus petit dénominateur commun de 6 et 2 est 6. Convertissez \frac{5}{6} et \frac{1}{2} en fractions avec le dénominateur 6.
\frac{5-3}{6}+\frac{17}{24}
Étant donné que \frac{5}{6} et \frac{3}{6} ont un dénominateur commun, soustrayez-les en soustrayant leur numérateur.
\frac{2}{6}+\frac{17}{24}
Soustraire 3 de 5 pour obtenir 2.
\frac{1}{3}+\frac{17}{24}
Réduire la fraction \frac{2}{6} au maximum en extrayant et en annulant 2.
\frac{8}{24}+\frac{17}{24}
Le plus petit dénominateur commun de 3 et 24 est 24. Convertissez \frac{1}{3} et \frac{17}{24} en fractions avec le dénominateur 24.
\frac{8+17}{24}
Étant donné que \frac{8}{24} et \frac{17}{24} ont un dénominateur commun, additionnez-les en additionnant leur numérateur.
\frac{25}{24}
Additionner 8 et 17 pour obtenir 25.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}