Aller au contenu principal
Calculer x (solution complexe)
Tick mark Image
Calculer x
Tick mark Image
Graphique

Problèmes similaires dans la recherche Web

Partager

x^{3}-1=0
Soustraire 1 des deux côtés.
±1
Selon le théorème de la racine évidente, toutes les racines évidentes d'un polynôme se présentent sous la forme \frac{p}{q}, où p divise le terme constant -1 et q divise le 1 de coefficients dominants. Répertorier tous les candidats \frac{p}{q}.
x=1
Recherchez une telle racine en testant toutes les valeurs de nombre entier, en commençant par la plus petite valeur absolue. Si aucune racine d'entier n'est trouvée, essayez avec des fractions.
x^{2}+x+1=0
Selon le théorème du produit nul, x-k est un facteur de polynôme pour chaque k racine. Diviser x^{3}-1 par x-1 pour obtenir x^{2}+x+1. Résoudre l’équation dont le résultat est égal à 0.
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 1}}{2}
Toutes les équations de la forme ax^{2}+bx+c=0 peuvent être résolues à l’aide de la formule quadratique : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Remplacez 1 pour a, 1 pour b et 1 pour c dans la formule quadratique.
x=\frac{-1±\sqrt{-3}}{2}
Effectuer les calculs.
x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
Résoudre l' x^{2}+x+1=0 de l'équation lorsque la ± est plus et que ± est moins.
x=1 x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
Répertoriez toutes les solutions qui ont été trouvées.
x^{3}-1=0
Soustraire 1 des deux côtés.
±1
Selon le théorème de la racine évidente, toutes les racines évidentes d'un polynôme se présentent sous la forme \frac{p}{q}, où p divise le terme constant -1 et q divise le 1 de coefficients dominants. Répertorier tous les candidats \frac{p}{q}.
x=1
Recherchez une telle racine en testant toutes les valeurs de nombre entier, en commençant par la plus petite valeur absolue. Si aucune racine d'entier n'est trouvée, essayez avec des fractions.
x^{2}+x+1=0
Selon le théorème du produit nul, x-k est un facteur de polynôme pour chaque k racine. Diviser x^{3}-1 par x-1 pour obtenir x^{2}+x+1. Résoudre l’équation dont le résultat est égal à 0.
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 1}}{2}
Toutes les équations de la forme ax^{2}+bx+c=0 peuvent être résolues à l’aide de la formule quadratique : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Remplacez 1 pour a, 1 pour b et 1 pour c dans la formule quadratique.
x=\frac{-1±\sqrt{-3}}{2}
Effectuer les calculs.
x\in \emptyset
Comme la racine carrée d’un nombre négatif n’est pas définie dans le champ réel, il n’existe aucune solution.
x=1
Répertoriez toutes les solutions qui ont été trouvées.