Calculer x
x=\sqrt{13}+2\approx 5,605551275
x=2-\sqrt{13}\approx -1,605551275
Graphique
Partager
Copié dans le Presse-papiers
x^{2}-4x-5=4
Toutes les équations de la forme ax^{2}+bx+c=0 peuvent être résolues à l’aide de la formule quadratique : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formule quadratique donne deux solutions, une lorsque ± est une addition et une autre lorsqu’il s’agit d’une soustraction.
x^{2}-4x-5-4=4-4
Soustraire 4 des deux côtés de l’équation.
x^{2}-4x-5-4=0
La soustraction de 4 de lui-même donne 0.
x^{2}-4x-9=0
Soustraire 4 à -5.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-9\right)}}{2}
Cette équation utilise le format standard : ax^{2}+bx+c=0. Substituez 1 à a, -4 à b et -9 à c dans la formule quadratique, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-9\right)}}{2}
Calculer le carré de -4.
x=\frac{-\left(-4\right)±\sqrt{16+36}}{2}
Multiplier -4 par -9.
x=\frac{-\left(-4\right)±\sqrt{52}}{2}
Additionner 16 et 36.
x=\frac{-\left(-4\right)±2\sqrt{13}}{2}
Extraire la racine carrée de 52.
x=\frac{4±2\sqrt{13}}{2}
L’inverse de -4 est 4.
x=\frac{2\sqrt{13}+4}{2}
Résolvez maintenant l’équation x=\frac{4±2\sqrt{13}}{2} lorsque ± est positif. Additionner 4 et 2\sqrt{13}.
x=\sqrt{13}+2
Diviser 4+2\sqrt{13} par 2.
x=\frac{4-2\sqrt{13}}{2}
Résolvez maintenant l’équation x=\frac{4±2\sqrt{13}}{2} lorsque ± est négatif. Soustraire 2\sqrt{13} à 4.
x=2-\sqrt{13}
Diviser 4-2\sqrt{13} par 2.
x=\sqrt{13}+2 x=2-\sqrt{13}
L’équation est désormais résolue.
x^{2}-4x-5=4
Les équations quadratiques de ce type peuvent être résolues en calculant le carré. Pour ce faire, l’équation doit d’abord utiliser le format x^{2}+bx=c.
x^{2}-4x-5-\left(-5\right)=4-\left(-5\right)
Ajouter 5 aux deux côtés de l’équation.
x^{2}-4x=4-\left(-5\right)
La soustraction de -5 de lui-même donne 0.
x^{2}-4x=9
Soustraire -5 à 4.
x^{2}-4x+\left(-2\right)^{2}=9+\left(-2\right)^{2}
Divisez -4, le coefficient de la x terme, par 2 pour récupérer -2. Ajouter ensuite le carré de -2 aux deux côtés de l’équation. Cette étape permet de transformer le côté gauche de l’équation en carré parfait.
x^{2}-4x+4=9+4
Calculer le carré de -2.
x^{2}-4x+4=13
Additionner 9 et 4.
\left(x-2\right)^{2}=13
Factor x^{2}-4x+4. En général, lorsque x^{2}+bx+c est un carré parfait, il peut toujours être factoriser comme \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{13}
Extraire la racine carrée des deux côtés de l’équation.
x-2=\sqrt{13} x-2=-\sqrt{13}
Simplifier.
x=\sqrt{13}+2 x=2-\sqrt{13}
Ajouter 2 aux deux côtés de l’équation.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}