Calculer x
x=-1
x = \frac{3}{2} = 1\frac{1}{2} = 1,5
Graphique
Partager
Copié dans le Presse-papiers
2x^{2}-x-3=0
Multiplier les deux côtés de l’équation par 2.
a+b=-1 ab=2\left(-3\right)=-6
Pour résoudre l’équation, factorisez le côté gauche en regroupant la main. Le côté gauche doit être réécrit en tant que 2x^{2}+ax+bx-3. Pour rechercher a et b, configurez un système à résoudre.
1,-6 2,-3
Étant donné que ab est négatif, a et b ont des signes opposés. Étant donné que a+b est négatif, le nombre négatif a une valeur absolue supérieure à la valeur positive. Répertoriez toutes les paires de ce nombre entier qui donnent le produit -6.
1-6=-5 2-3=-1
Calculez la somme de chaque paire.
a=-3 b=2
La solution est la paire qui donne la somme -1.
\left(2x^{2}-3x\right)+\left(2x-3\right)
Réécrire 2x^{2}-x-3 en tant qu’\left(2x^{2}-3x\right)+\left(2x-3\right).
x\left(2x-3\right)+2x-3
Factoriser x dans 2x^{2}-3x.
\left(2x-3\right)\left(x+1\right)
Factoriser le facteur commun 2x-3 en utilisant la distributivité.
x=\frac{3}{2} x=-1
Pour rechercher des solutions d’équation, résolvez 2x-3=0 et x+1=0.
2x^{2}-x-3=0
Multiplier les deux côtés de l’équation par 2.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-3\right)}}{2\times 2}
Cette équation utilise le format standard : ax^{2}+bx+c=0. Substituez 2 à a, -1 à b et -3 à c dans la formule quadratique, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-3\right)}}{2\times 2}
Multiplier -4 par 2.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\times 2}
Multiplier -8 par -3.
x=\frac{-\left(-1\right)±\sqrt{25}}{2\times 2}
Additionner 1 et 24.
x=\frac{-\left(-1\right)±5}{2\times 2}
Extraire la racine carrée de 25.
x=\frac{1±5}{2\times 2}
L’inverse de -1 est 1.
x=\frac{1±5}{4}
Multiplier 2 par 2.
x=\frac{6}{4}
Résolvez maintenant l’équation x=\frac{1±5}{4} lorsque ± est positif. Additionner 1 et 5.
x=\frac{3}{2}
Réduire la fraction \frac{6}{4} au maximum en extrayant et en annulant 2.
x=-\frac{4}{4}
Résolvez maintenant l’équation x=\frac{1±5}{4} lorsque ± est négatif. Soustraire 5 à 1.
x=-1
Diviser -4 par 4.
x=\frac{3}{2} x=-1
L’équation est désormais résolue.
2x^{2}-x-3=0
Multiplier les deux côtés de l’équation par 2.
2x^{2}-x=3
Ajouter 3 aux deux côtés. Une valeur plus zéro donne la même valeur.
\frac{2x^{2}-x}{2}=\frac{3}{2}
Divisez les deux côtés par 2.
x^{2}-\frac{1}{2}x=\frac{3}{2}
La division par 2 annule la multiplication par 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{3}{2}+\left(-\frac{1}{4}\right)^{2}
Divisez -\frac{1}{2}, le coefficient de la x terme, par 2 pour récupérer -\frac{1}{4}. Ajouter ensuite le carré de -\frac{1}{4} aux deux côtés de l’équation. Cette étape permet de transformer le côté gauche de l’équation en carré parfait.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{3}{2}+\frac{1}{16}
Calculer le carré de -\frac{1}{4} en élévant au carré le numérateur et le dénominateur de la fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{25}{16}
Additionner \frac{3}{2} et \frac{1}{16} en trouvant un dénominateur commun et en additionnant les numérateurs. Réduire ensuite la fraction au maximum si possible.
\left(x-\frac{1}{4}\right)^{2}=\frac{25}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. En général, lorsque x^{2}+bx+c est un carré parfait, il peut toujours être factoriser comme \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Extraire la racine carrée des deux côtés de l’équation.
x-\frac{1}{4}=\frac{5}{4} x-\frac{1}{4}=-\frac{5}{4}
Simplifier.
x=\frac{3}{2} x=-1
Ajouter \frac{1}{4} aux deux côtés de l’équation.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}