Différencier w.r.t. x_6
\frac{1}{\left(\cos(x_{6})\right)^{2}}
Évaluer
\tan(x_{6})
Partager
Copié dans le Presse-papiers
\frac{\mathrm{d}}{\mathrm{d}x_{6}}(\frac{\sin(x_{6})}{\cos(x_{6})})
Utiliser la définition de la tangente.
\frac{\cos(x_{6})\frac{\mathrm{d}}{\mathrm{d}x_{6}}(\sin(x_{6}))-\sin(x_{6})\frac{\mathrm{d}}{\mathrm{d}x_{6}}(\cos(x_{6}))}{\left(\cos(x_{6})\right)^{2}}
Pour deux fonctions dérivables, la dérivée du quotient des deux fonctions est le dénominateur fois la dérivée du numérateur moins le numérateur fois la dérivée du dénominateur, le tout divisé par le dénominateur au carré.
\frac{\cos(x_{6})\cos(x_{6})-\sin(x_{6})\left(-\sin(x_{6})\right)}{\left(\cos(x_{6})\right)^{2}}
La dérivée de sin(x_{6}) est cos(x_{6}) et la dérivée de cos(x_{6}) est −sin(x_{6}).
\frac{\left(\cos(x_{6})\right)^{2}+\left(\sin(x_{6})\right)^{2}}{\left(\cos(x_{6})\right)^{2}}
Simplifier.
\frac{1}{\left(\cos(x_{6})\right)^{2}}
Utiliser l’identité de Pythagore.
\left(\sec(x_{6})\right)^{2}
Utiliser la définition de la sécante.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}