Évaluer
\frac{\sqrt{890}}{20}\approx 1,491643389
Partager
Copié dans le Presse-papiers
\sqrt{\frac{89}{40}}
Additionner 64 et 25 pour obtenir 89.
\frac{\sqrt{89}}{\sqrt{40}}
Réécrivez la racine carrée de la Division \sqrt{\frac{89}{40}} comme Division des racines carrées \frac{\sqrt{89}}{\sqrt{40}}.
\frac{\sqrt{89}}{2\sqrt{10}}
Factoriser 40=2^{2}\times 10. Réécrivez la racine carrée du \sqrt{2^{2}\times 10} de produit en tant que produit des racines carrées \sqrt{2^{2}}\sqrt{10}. Extraire la racine carrée de 2^{2}.
\frac{\sqrt{89}\sqrt{10}}{2\left(\sqrt{10}\right)^{2}}
Rationaliser le dénominateur de \frac{\sqrt{89}}{2\sqrt{10}} en multipliant le numérateur et le dénominateur par \sqrt{10}.
\frac{\sqrt{89}\sqrt{10}}{2\times 10}
Le carré de \sqrt{10} est 10.
\frac{\sqrt{890}}{2\times 10}
Pour multiplier \sqrt{89} et \sqrt{10}, multipliez les nombres sous la racine carrée.
\frac{\sqrt{890}}{20}
Multiplier 2 et 10 pour obtenir 20.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}