Aller au contenu principal
Différencier w.r.t. θ
Tick mark Image
Évaluer
Tick mark Image
Graphique

Problèmes similaires dans la recherche Web

Partager

\sec(-\theta ^{1}+90)\tan(-\theta ^{1}+90)\frac{\mathrm{d}}{\mathrm{d}\theta }(-\theta ^{1}+90)
Si F est la composition de deux fonctions dérivables f\left(u\right) et u=g\left(x\right), c’est-à-dire, si F\left(x\right)=f\left(g\left(x\right)\right), puis la dérivée de F est la dérivée de f par rapport à u fois la dérivée de g par rapport à x, c’est-à-dire, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\sec(-\theta ^{1}+90)\tan(-\theta ^{1}+90)\left(-1\right)\theta ^{1-1}
La dérivée d’un polynôme est la somme des dérivées de ses termes. La dérivée d’un terme constant est 0. La dérivée de ax^{n} est nax^{n-1}.
-\sec(-\theta ^{1}+90)\tan(-\theta ^{1}+90)
Simplifier.
-\sec(-\theta +90)\tan(-\theta +90)
Pour n’importe quel terme t, t^{1}=t.