\left| \begin{array} { l l l } { i } & { j } & { k } \\ { 3 } & { i } & { 2 } \\ { 1 } & { 1 } & { 3 } \end{array} \right|
Évaluer
-3-2i+\left(3-i\right)k-7j
Partager
Copié dans le Presse-papiers
det(\left(\begin{matrix}i&j&k\\3&i&2\\1&1&3\end{matrix}\right))
Trouver le déterminant de la matrice à l’aide de la méthode des diagonales.
\left(\begin{matrix}i&j&k&i&j\\3&i&2&3&i\\1&1&3&1&1\end{matrix}\right)
Étendre la matrice d’origine en répétant les deux premières colonnes comme quatrième et cinquième colonnes.
i\times \left(3i\right)+j\times 2+k\times 3=2j+3k-3
En commençant par l’entrée gauche supérieure, multiplier vers le bas le long des diagonales et additionner les produits obtenus.
ik+2i+3\times 3j=9j+ik+2i
En commençant par l’entrée gauche inférieure, multiplier vers le haut le long des diagonales et additionner les produits obtenus.
2j+3k-3-\left(9j+ik+2i\right)
Soustraire la somme des produits en diagonale vers le haut de la somme des produits en diagonale vers le bas.
-3-2i+\left(3-i\right)k-7j
Soustraire ik+2i+9j à -3+2j+3k.
det(\left(\begin{matrix}i&j&k\\3&i&2\\1&1&3\end{matrix}\right))
Trouver le déterminant de la matrice à l’aide de la méthode d’extension par les mineurs (ou extension par les cofacteurs).
idet(\left(\begin{matrix}i&2\\1&3\end{matrix}\right))-jdet(\left(\begin{matrix}3&2\\1&3\end{matrix}\right))+kdet(\left(\begin{matrix}3&i\\1&1\end{matrix}\right))
Pour étendre par les mineurs, multipliez chaque élément de la première ligne par son mineur, qui est le déterminant de la matrice 2\times 2 créée par la suppression de la ligne et de la colonne contenant cet élément, puis multipliez par le signe de position de l’élément.
i\left(3i-2\right)-j\left(3\times 3-2\right)+k\left(3-i\right)
Pour le \left(\begin{matrix}a&b\\c&d\end{matrix}\right) de matrice 2\times 2, le déterminant est ad-bc.
i\left(-2+3i\right)-j\times 7+k\left(3-i\right)
Simplifier.
-3-2i+\left(3-i\right)k-7j
Ajouter les termes pour obtenir le résultat final.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}