\left| \begin{array} { c c c } { - 7 } & { - 1 } & { 1 } \\ { - 6 } & { 0 } & { \frac { 1 } { 2 } } \\ { - 1 } & { 1 } & { 1 } \end{array} \right|
Évaluer
-8
Factoriser
-8
Partager
Copié dans le Presse-papiers
det(\left(\begin{matrix}-7&-1&1\\-6&0&\frac{1}{2}\\-1&1&1\end{matrix}\right))
Trouver le déterminant de la matrice à l’aide de la méthode des diagonales.
\left(\begin{matrix}-7&-1&1&-7&-1\\-6&0&\frac{1}{2}&-6&0\\-1&1&1&-1&1\end{matrix}\right)
Étendre la matrice d’origine en répétant les deux premières colonnes comme quatrième et cinquième colonnes.
-\frac{1}{2}\left(-1\right)-6=-\frac{11}{2}
En commençant par l’entrée gauche supérieure, multiplier vers le bas le long des diagonales et additionner les produits obtenus.
\frac{1}{2}\left(-7\right)-6\left(-1\right)=\frac{5}{2}
En commençant par l’entrée gauche inférieure, multiplier vers le haut le long des diagonales et additionner les produits obtenus.
-\frac{11}{2}-\frac{5}{2}
Soustraire la somme des produits en diagonale vers le haut de la somme des produits en diagonale vers le bas.
-8
Soustraire \frac{5}{2} de -\frac{11}{2} en trouvant un dénominateur commun et en soustrayant les numérateurs. Réduire ensuite la fraction au maximum si possible.
det(\left(\begin{matrix}-7&-1&1\\-6&0&\frac{1}{2}\\-1&1&1\end{matrix}\right))
Trouver le déterminant de la matrice à l’aide de la méthode d’extension par les mineurs (ou extension par les cofacteurs).
-7det(\left(\begin{matrix}0&\frac{1}{2}\\1&1\end{matrix}\right))-\left(-det(\left(\begin{matrix}-6&\frac{1}{2}\\-1&1\end{matrix}\right))\right)+det(\left(\begin{matrix}-6&0\\-1&1\end{matrix}\right))
Pour étendre par les mineurs, multipliez chaque élément de la première ligne par son mineur, qui est le déterminant de la matrice 2\times 2 créée par la suppression de la ligne et de la colonne contenant cet élément, puis multipliez par le signe de position de l’élément.
-7\left(-\frac{1}{2}\right)-\left(-\left(-6-\left(-\frac{1}{2}\right)\right)\right)-6
Pour le \left(\begin{matrix}a&b\\c&d\end{matrix}\right) de matrice 2\times 2, le déterminant est ad-bc.
-7\left(-\frac{1}{2}\right)-\left(-\left(-\frac{11}{2}\right)\right)-6
Simplifier.
-8
Ajouter les termes pour obtenir le résultat final.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}