Évaluer
\frac{1943795}{69}\approx 28170,942028986
Partager
Copié dans le Presse-papiers
\int _{2}^{7}\left(4112x-\left(-\left(x-2\right)\left(x-2\right)\right)\right)\times \frac{7}{23}\mathrm{d}x
Annuler 2 et 2.
\int _{2}^{7}\left(4112x-\left(-\left(x-2\right)x+2x-4\right)\right)\times \frac{7}{23}\mathrm{d}x
Utiliser la distributivité pour multiplier -\left(x-2\right) par x-2.
\int _{2}^{7}\left(4112x-\left(\left(-x+2\right)x+2x-4\right)\right)\times \frac{7}{23}\mathrm{d}x
Utiliser la distributivité pour multiplier -1 par x-2.
\int _{2}^{7}\left(4112x-\left(-x^{2}+2x+2x-4\right)\right)\times \frac{7}{23}\mathrm{d}x
Utiliser la distributivité pour multiplier -x+2 par x.
\int _{2}^{7}\left(4112x-\left(-x^{2}+4x-4\right)\right)\times \frac{7}{23}\mathrm{d}x
Combiner 2x et 2x pour obtenir 4x.
\int _{2}^{7}\left(4112x-\left(-x^{2}\right)-4x-\left(-4\right)\right)\times \frac{7}{23}\mathrm{d}x
Pour trouver l’opposé de -x^{2}+4x-4, recherchez l’opposé de chaque terme.
\int _{2}^{7}\left(4112x+x^{2}-4x-\left(-4\right)\right)\times \frac{7}{23}\mathrm{d}x
L’inverse de -x^{2} est x^{2}.
\int _{2}^{7}\left(4112x+x^{2}-4x+4\right)\times \frac{7}{23}\mathrm{d}x
L’inverse de -4 est 4.
\int _{2}^{7}\left(4108x+x^{2}+4\right)\times \frac{7}{23}\mathrm{d}x
Combiner 4112x et -4x pour obtenir 4108x.
\int _{2}^{7}4108x\times \frac{7}{23}+x^{2}\times \frac{7}{23}+4\times \frac{7}{23}\mathrm{d}x
Utiliser la distributivité pour multiplier 4108x+x^{2}+4 par \frac{7}{23}.
\int _{2}^{7}\frac{4108\times 7}{23}x+x^{2}\times \frac{7}{23}+4\times \frac{7}{23}\mathrm{d}x
Exprimer 4108\times \frac{7}{23} sous la forme d’une fraction seule.
\int _{2}^{7}\frac{28756}{23}x+x^{2}\times \frac{7}{23}+4\times \frac{7}{23}\mathrm{d}x
Multiplier 4108 et 7 pour obtenir 28756.
\int _{2}^{7}\frac{28756}{23}x+x^{2}\times \frac{7}{23}+\frac{4\times 7}{23}\mathrm{d}x
Exprimer 4\times \frac{7}{23} sous la forme d’une fraction seule.
\int _{2}^{7}\frac{28756}{23}x+x^{2}\times \frac{7}{23}+\frac{28}{23}\mathrm{d}x
Multiplier 4 et 7 pour obtenir 28.
\int \frac{28756x+7x^{2}+28}{23}\mathrm{d}x
Évaluez l’intégrale indéfinie en premier.
\int \frac{28756x}{23}\mathrm{d}x+\int \frac{7x^{2}}{23}\mathrm{d}x+\int \frac{28}{23}\mathrm{d}x
Intégrez le terme somme par terme.
\frac{28756\int x\mathrm{d}x}{23}+\frac{7\int x^{2}\mathrm{d}x}{23}+\int \frac{28}{23}\mathrm{d}x
Factorisez la constante dans chaque terme.
\frac{14378x^{2}}{23}+\frac{7\int x^{2}\mathrm{d}x}{23}+\int \frac{28}{23}\mathrm{d}x
Dans la mesure où \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pour k\neq -1, remplacez \int x\mathrm{d}x par \frac{x^{2}}{2}. Multiplier \frac{28756}{23} par \frac{x^{2}}{2}.
\frac{14378x^{2}}{23}+\frac{7x^{3}}{69}+\int \frac{28}{23}\mathrm{d}x
Dans la mesure où \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pour k\neq -1, remplacez \int x^{2}\mathrm{d}x par \frac{x^{3}}{3}. Multiplier \frac{7}{23} par \frac{x^{3}}{3}.
\frac{14378x^{2}}{23}+\frac{7x^{3}}{69}+\frac{28x}{23}
Trouver l’intégralité de \frac{28}{23} à l’aide du tableau de la règle des intégraux communs \int a\mathrm{d}x=ax.
\frac{14378}{23}\times 7^{2}+\frac{7}{69}\times 7^{3}+\frac{28}{23}\times 7-\left(\frac{14378}{23}\times 2^{2}+\frac{7}{69}\times 2^{3}+\frac{28}{23}\times 2\right)
L’intégrale définie est la primitive de l'expression évaluée à la limite supérieure de l’intégration moins la primitive évaluée à la limite inférieure de l’intégration.
\frac{1943795}{69}
Simplifier.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}