Aller au contenu principal
Évaluer
Tick mark Image

Problèmes similaires dans la recherche Web

Partager

\int x^{3}+2x^{2}-3\mathrm{d}x
Évaluez l’intégrale indéfinie en premier.
\int x^{3}\mathrm{d}x+\int 2x^{2}\mathrm{d}x+\int -3\mathrm{d}x
Intégrez le terme somme par terme.
\int x^{3}\mathrm{d}x+2\int x^{2}\mathrm{d}x+\int -3\mathrm{d}x
Factorisez la constante dans chaque terme.
\frac{x^{4}}{4}+2\int x^{2}\mathrm{d}x+\int -3\mathrm{d}x
Dans la mesure où \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pour k\neq -1, remplacez \int x^{3}\mathrm{d}x par \frac{x^{4}}{4}.
\frac{x^{4}}{4}+\frac{2x^{3}}{3}+\int -3\mathrm{d}x
Dans la mesure où \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pour k\neq -1, remplacez \int x^{2}\mathrm{d}x par \frac{x^{3}}{3}. Multiplier 2 par \frac{x^{3}}{3}.
\frac{x^{4}}{4}+\frac{2x^{3}}{3}-3x
Trouver l’intégralité de -3 à l’aide du tableau de la règle des intégraux communs \int a\mathrm{d}x=ax.
\frac{2^{4}}{4}+\frac{2}{3}\times 2^{3}-3\times 2-\left(\frac{0^{4}}{4}+\frac{2}{3}\times 0^{3}-3\times 0\right)
L’intégrale définie est la primitive de l'expression évaluée à la limite supérieure de l’intégration moins la primitive évaluée à la limite inférieure de l’intégration.
\frac{10}{3}
Simplifier.