Évaluer
\frac{x^{5}}{5}-\frac{5x^{4}}{4}+3x^{3}-\frac{7x^{2}}{2}+2x+С
Différencier w.r.t. x
\left(x-2\right)\left(x-1\right)^{3}
Partager
Copié dans le Presse-papiers
\int \left(x^{3}-3x^{2}+3x-1\right)\left(x-2\right)\mathrm{d}x
Utilisez la formule du binôme \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} pour développer \left(x-1\right)^{3}.
\int x^{4}-5x^{3}+9x^{2}-7x+2\mathrm{d}x
Utilisez la distributivité pour multiplier x^{3}-3x^{2}+3x-1 par x-2 et combiner les termes semblables.
\int x^{4}\mathrm{d}x+\int -5x^{3}\mathrm{d}x+\int 9x^{2}\mathrm{d}x+\int -7x\mathrm{d}x+\int 2\mathrm{d}x
Intégrez le terme somme par terme.
\int x^{4}\mathrm{d}x-5\int x^{3}\mathrm{d}x+9\int x^{2}\mathrm{d}x-7\int x\mathrm{d}x+\int 2\mathrm{d}x
Factorisez la constante dans chaque terme.
\frac{x^{5}}{5}-5\int x^{3}\mathrm{d}x+9\int x^{2}\mathrm{d}x-7\int x\mathrm{d}x+\int 2\mathrm{d}x
Dans la mesure où \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pour k\neq -1, remplacez \int x^{4}\mathrm{d}x par \frac{x^{5}}{5}.
\frac{x^{5}}{5}-\frac{5x^{4}}{4}+9\int x^{2}\mathrm{d}x-7\int x\mathrm{d}x+\int 2\mathrm{d}x
Dans la mesure où \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pour k\neq -1, remplacez \int x^{3}\mathrm{d}x par \frac{x^{4}}{4}. Multiplier -5 par \frac{x^{4}}{4}.
\frac{x^{5}}{5}-\frac{5x^{4}}{4}+3x^{3}-7\int x\mathrm{d}x+\int 2\mathrm{d}x
Dans la mesure où \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pour k\neq -1, remplacez \int x^{2}\mathrm{d}x par \frac{x^{3}}{3}. Multiplier 9 par \frac{x^{3}}{3}.
\frac{x^{5}}{5}-\frac{5x^{4}}{4}+3x^{3}-\frac{7x^{2}}{2}+\int 2\mathrm{d}x
Dans la mesure où \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pour k\neq -1, remplacez \int x\mathrm{d}x par \frac{x^{2}}{2}. Multiplier -7 par \frac{x^{2}}{2}.
\frac{x^{5}}{5}-\frac{5x^{4}}{4}+3x^{3}-\frac{7x^{2}}{2}+2x
Trouver l’intégralité de 2 à l’aide du tableau de la règle des intégraux communs \int a\mathrm{d}x=ax.
-\frac{7x^{2}}{2}+2x+3x^{3}-\frac{5x^{4}}{4}+\frac{x^{5}}{5}
Simplifier.
-\frac{7x^{2}}{2}+2x+3x^{3}-\frac{5x^{4}}{4}+\frac{x^{5}}{5}+С
Si F\left(x\right) est une primitive de f\left(x\right), l’ensemble de tous les dérivés de f\left(x\right) est donné par F\left(x\right)+C. Par conséquent, ajoutez la constante de l’intégration C\in \mathrm{R} au résultat.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}