Aller au contenu principal
Évaluer
Tick mark Image
Différencier w.r.t. x
Tick mark Image

Problèmes similaires dans la recherche Web

Partager

\int x^{3}-3x^{2}+3x-1+\left(x-1\right)^{2}-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Utilisez la formule du binôme \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} pour développer \left(x-1\right)^{3}.
\int x^{3}-3x^{2}+3x-1+x^{2}-2x+1-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Utilisez la formule du binôme \left(a-b\right)^{2}=a^{2}-2ab+b^{2} pour développer \left(x-1\right)^{2}.
\int x^{3}-2x^{2}+3x-1-2x+1-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Combiner -3x^{2} et x^{2} pour obtenir -2x^{2}.
\int x^{3}-2x^{2}+x-1+1-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Combiner 3x et -2x pour obtenir x.
\int x^{3}-2x^{2}+x-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Additionner -1 et 1 pour obtenir 0.
\int x^{3}-2x^{2}+x-x+\left(4x-x^{2}\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Utiliser la distributivité pour multiplier x par 4-x.
\int x^{3}-2x^{2}+x-x+16x-x^{3}+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Utilisez la distributivité pour multiplier 4x-x^{2} par 4+x et combiner les termes semblables.
\int x^{3}-2x^{2}+17x-x-x^{3}+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Combiner x et 16x pour obtenir 17x.
\int -2x^{2}+17x-x+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Combiner x^{3} et -x^{3} pour obtenir 0.
\int -2x^{2}+17x-x+x^{4}+2x^{3}-15x^{2}-16x+64+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Calculer le carré de 8-x-x^{2}.
\int -17x^{2}+17x-x+x^{4}+2x^{3}-16x+64+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Combiner -2x^{2} et -15x^{2} pour obtenir -17x^{2}.
\int -17x^{2}+x-x+x^{4}+2x^{3}+64+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Combiner 17x et -16x pour obtenir x.
\int -17x^{2}+x-x+x^{4}+2x^{3}+64+17x^{2}-x^{4}\mathrm{d}x
Utiliser la distributivité pour multiplier x^{2} par 17-x^{2}.
\int x-x+x^{4}+2x^{3}+64-x^{4}\mathrm{d}x
Combiner -17x^{2} et 17x^{2} pour obtenir 0.
\int x-x+2x^{3}+64\mathrm{d}x
Combiner x^{4} et -x^{4} pour obtenir 0.
\int 2x^{3}+64\mathrm{d}x
Combiner x et -x pour obtenir 0.
\int 2x^{3}\mathrm{d}x+\int 64\mathrm{d}x
Intégrez le terme somme par terme.
2\int x^{3}\mathrm{d}x+\int 64\mathrm{d}x
Factorisez la constante dans chaque terme.
\frac{x^{4}}{2}+\int 64\mathrm{d}x
Dans la mesure où \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pour k\neq -1, remplacez \int x^{3}\mathrm{d}x par \frac{x^{4}}{4}. Multiplier 2 par \frac{x^{4}}{4}.
\frac{x^{4}}{2}+64x
Trouver l’intégralité de 64 à l’aide du tableau de la règle des intégraux communs \int a\mathrm{d}x=ax.
64x+\frac{x^{4}}{2}+С
Si F\left(x\right) est une primitive de f\left(x\right), l’ensemble de tous les dérivés de f\left(x\right) est donné par F\left(x\right)+C. Par conséquent, ajoutez la constante de l’intégration C\in \mathrm{R} au résultat.