Aller au contenu principal
Évaluer
Tick mark Image
Factoriser
Tick mark Image

Problèmes similaires dans la recherche Web

Partager

\frac{0\times \frac{-1}{2}+\left(\frac{5}{6}\right)^{-2}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Multiplier 0 et 4 pour obtenir 0.
\frac{0\left(-\frac{1}{2}\right)+\left(\frac{5}{6}\right)^{-2}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
La fraction \frac{-1}{2} peut être réécrite comme -\frac{1}{2} en extrayant le signe négatif.
\frac{0+\left(\frac{5}{6}\right)^{-2}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Multiplier 0 et -\frac{1}{2} pour obtenir 0.
\frac{0+\frac{36}{25}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Calculer \frac{5}{6} à la puissance -2 et obtenir \frac{36}{25}.
\frac{\frac{36}{25}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Additionner 0 et \frac{36}{25} pour obtenir \frac{36}{25}.
\frac{\frac{36}{25}}{\left(\frac{1}{\frac{1}{2}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Calculer 2 à la puissance -1 et obtenir \frac{1}{2}.
\frac{\frac{36}{25}}{\left(1\times 2\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Diviser 1 par \frac{1}{2} en multipliant 1 par la réciproque de \frac{1}{2}.
\frac{\frac{36}{25}}{2^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Multiplier 1 et 2 pour obtenir 2.
\frac{\frac{36}{25}}{\frac{1}{2}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Calculer 2 à la puissance -1 et obtenir \frac{1}{2}.
\frac{36}{25}\times 2+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Diviser \frac{36}{25} par \frac{1}{2} en multipliant \frac{36}{25} par la réciproque de \frac{1}{2}.
\frac{72}{25}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Multiplier \frac{36}{25} et 2 pour obtenir \frac{72}{25}.
\frac{72}{25}+\frac{2\times 10^{-6}}{10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Annuler 567 dans le numérateur et le dénominateur.
\frac{72}{25}+2\times 10^{1}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Pour diviser les puissances de la même base, soustrayez l’exposant du dénominateur de l’exposant du numérateur.
\frac{72}{25}+2\times 10\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Calculer 10 à la puissance 1 et obtenir 10.
\frac{72}{25}+20\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Multiplier 2 et 10 pour obtenir 20.
\frac{72}{25}+20\times 0^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Multiplier 0 et 1 pour obtenir 0.
\frac{72}{25}+20\times 0-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Calculer 0 à la puissance 2 et obtenir 0.
\frac{72}{25}+0-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Multiplier 20 et 0 pour obtenir 0.
\frac{72}{25}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Additionner \frac{72}{25} et 0 pour obtenir \frac{72}{25}.
\frac{72}{25}-\left(\frac{\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Soustraire \frac{1}{2} de 1 pour obtenir \frac{1}{2}.
\frac{72}{25}-\left(\frac{\frac{1}{2}}{-\frac{1}{4}-2}\right)^{-1}
La fraction \frac{-1}{4} peut être réécrite comme -\frac{1}{4} en extrayant le signe négatif.
\frac{72}{25}-\left(\frac{\frac{1}{2}}{-\frac{9}{4}}\right)^{-1}
Soustraire 2 de -\frac{1}{4} pour obtenir -\frac{9}{4}.
\frac{72}{25}-\left(\frac{1}{2}\left(-\frac{4}{9}\right)\right)^{-1}
Diviser \frac{1}{2} par -\frac{9}{4} en multipliant \frac{1}{2} par la réciproque de -\frac{9}{4}.
\frac{72}{25}-\left(-\frac{2}{9}\right)^{-1}
Multiplier \frac{1}{2} et -\frac{4}{9} pour obtenir -\frac{2}{9}.
\frac{72}{25}-\left(-\frac{9}{2}\right)
Calculer -\frac{2}{9} à la puissance -1 et obtenir -\frac{9}{2}.
\frac{72}{25}+\frac{9}{2}
L’inverse de -\frac{9}{2} est \frac{9}{2}.
\frac{369}{50}
Additionner \frac{72}{25} et \frac{9}{2} pour obtenir \frac{369}{50}.