Calculer x
x=3
Graphique
Partager
Copié dans le Presse-papiers
x^{2}-1=2\left(x+1\right)
La variable x ne peut pas être égale à -1 étant donné que la division par zéro n’est pas définie. Multiplier les deux côtés de l’équation par x+1.
x^{2}-1=2x+2
Utiliser la distributivité pour multiplier 2 par x+1.
x^{2}-1-2x=2
Soustraire 2x des deux côtés.
x^{2}-1-2x-2=0
Soustraire 2 des deux côtés.
x^{2}-3-2x=0
Soustraire 2 de -1 pour obtenir -3.
x^{2}-2x-3=0
Réorganisez le polynôme pour utiliser le format standard. Ordonnez les termes de la puissance la plus élevée à la plus faible.
a+b=-2 ab=-3
Pour résoudre l’équation, facteur x^{2}-2x-3 à l’aide de la x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) de formule. Pour rechercher a et b, configurez un système à résoudre.
a=-3 b=1
Étant donné que ab est négatif, a et b ont des signes opposés. Étant donné que a+b est négatif, le nombre négatif a une valeur absolue supérieure à la valeur positive. La seule paire de ce type est la solution système.
\left(x-3\right)\left(x+1\right)
Réécrivez l’expression factorisée \left(x+a\right)\left(x+b\right) à l’aide des valeurs obtenues.
x=3 x=-1
Pour rechercher des solutions d’équation, résolvez x-3=0 et x+1=0.
x=3
La variable x ne peut pas être égale à -1.
x^{2}-1=2\left(x+1\right)
La variable x ne peut pas être égale à -1 étant donné que la division par zéro n’est pas définie. Multiplier les deux côtés de l’équation par x+1.
x^{2}-1=2x+2
Utiliser la distributivité pour multiplier 2 par x+1.
x^{2}-1-2x=2
Soustraire 2x des deux côtés.
x^{2}-1-2x-2=0
Soustraire 2 des deux côtés.
x^{2}-3-2x=0
Soustraire 2 de -1 pour obtenir -3.
x^{2}-2x-3=0
Réorganisez le polynôme pour utiliser le format standard. Ordonnez les termes de la puissance la plus élevée à la plus faible.
a+b=-2 ab=1\left(-3\right)=-3
Pour résoudre l’équation, factorisez le côté gauche en regroupant la main. Le côté gauche doit être réécrit en tant que x^{2}+ax+bx-3. Pour rechercher a et b, configurez un système à résoudre.
a=-3 b=1
Étant donné que ab est négatif, a et b ont des signes opposés. Étant donné que a+b est négatif, le nombre négatif a une valeur absolue supérieure à la valeur positive. La seule paire de ce type est la solution système.
\left(x^{2}-3x\right)+\left(x-3\right)
Réécrire x^{2}-2x-3 en tant qu’\left(x^{2}-3x\right)+\left(x-3\right).
x\left(x-3\right)+x-3
Factoriser x dans x^{2}-3x.
\left(x-3\right)\left(x+1\right)
Factoriser le facteur commun x-3 en utilisant la distributivité.
x=3 x=-1
Pour rechercher des solutions d’équation, résolvez x-3=0 et x+1=0.
x=3
La variable x ne peut pas être égale à -1.
x^{2}-1=2\left(x+1\right)
La variable x ne peut pas être égale à -1 étant donné que la division par zéro n’est pas définie. Multiplier les deux côtés de l’équation par x+1.
x^{2}-1=2x+2
Utiliser la distributivité pour multiplier 2 par x+1.
x^{2}-1-2x=2
Soustraire 2x des deux côtés.
x^{2}-1-2x-2=0
Soustraire 2 des deux côtés.
x^{2}-3-2x=0
Soustraire 2 de -1 pour obtenir -3.
x^{2}-2x-3=0
Toutes les équations de la forme ax^{2}+bx+c=0 peuvent être résolues à l’aide de la formule quadratique : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formule quadratique donne deux solutions, une lorsque ± est une addition et une autre lorsqu’il s’agit d’une soustraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
Cette équation utilise le format standard : ax^{2}+bx+c=0. Substituez 1 à a, -2 à b et -3 à c dans la formule quadratique, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
Calculer le carré de -2.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
Multiplier -4 par -3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
Additionner 4 et 12.
x=\frac{-\left(-2\right)±4}{2}
Extraire la racine carrée de 16.
x=\frac{2±4}{2}
L’inverse de -2 est 2.
x=\frac{6}{2}
Résolvez maintenant l’équation x=\frac{2±4}{2} lorsque ± est positif. Additionner 2 et 4.
x=3
Diviser 6 par 2.
x=-\frac{2}{2}
Résolvez maintenant l’équation x=\frac{2±4}{2} lorsque ± est négatif. Soustraire 4 à 2.
x=-1
Diviser -2 par 2.
x=3 x=-1
L’équation est désormais résolue.
x=3
La variable x ne peut pas être égale à -1.
x^{2}-1=2\left(x+1\right)
La variable x ne peut pas être égale à -1 étant donné que la division par zéro n’est pas définie. Multiplier les deux côtés de l’équation par x+1.
x^{2}-1=2x+2
Utiliser la distributivité pour multiplier 2 par x+1.
x^{2}-1-2x=2
Soustraire 2x des deux côtés.
x^{2}-2x=2+1
Ajouter 1 aux deux côtés.
x^{2}-2x=3
Additionner 2 et 1 pour obtenir 3.
x^{2}-2x+1=3+1
Divisez -2, le coefficient de la x terme, par 2 pour récupérer -1. Ajouter ensuite le carré de -1 aux deux côtés de l’équation. Cette étape permet de transformer le côté gauche de l’équation en carré parfait.
x^{2}-2x+1=4
Additionner 3 et 1.
\left(x-1\right)^{2}=4
Factor x^{2}-2x+1. En général, lorsque x^{2}+bx+c est un carré parfait, il peut toujours être factoriser comme \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Extraire la racine carrée des deux côtés de l’équation.
x-1=2 x-1=-2
Simplifier.
x=3 x=-1
Ajouter 1 aux deux côtés de l’équation.
x=3
La variable x ne peut pas être égale à -1.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}