\frac{ { 9 }^{ 2 } \frac{ 9 }{ { \left(6 \frac{ 6 }{ \sqrt{ 6 } } \right) }^{ 2 } } }{ }
Évaluer
\frac{27}{8}=3,375
Factoriser
\frac{3 ^ {3}}{2 ^ {3}} = 3\frac{3}{8} = 3,375
Partager
Copié dans le Presse-papiers
\frac{81\times \frac{9}{\left(6\times \frac{6}{\sqrt{6}}\right)^{2}}}{1}
Calculer 9 à la puissance 2 et obtenir 81.
\frac{81\times \frac{9}{\left(6\times \frac{6\sqrt{6}}{\left(\sqrt{6}\right)^{2}}\right)^{2}}}{1}
Rationaliser le dénominateur de \frac{6}{\sqrt{6}} en multipliant le numérateur et le dénominateur par \sqrt{6}.
\frac{81\times \frac{9}{\left(6\times \frac{6\sqrt{6}}{6}\right)^{2}}}{1}
Le carré de \sqrt{6} est 6.
\frac{81\times \frac{9}{\left(6\sqrt{6}\right)^{2}}}{1}
Annuler 6 et 6.
\frac{81\times \frac{9}{6^{2}\left(\sqrt{6}\right)^{2}}}{1}
Étendre \left(6\sqrt{6}\right)^{2}.
\frac{81\times \frac{9}{36\left(\sqrt{6}\right)^{2}}}{1}
Calculer 6 à la puissance 2 et obtenir 36.
\frac{81\times \frac{9}{36\times 6}}{1}
Le carré de \sqrt{6} est 6.
\frac{81\times \frac{9}{216}}{1}
Multiplier 36 et 6 pour obtenir 216.
\frac{81\times \frac{1}{24}}{1}
Réduire la fraction \frac{9}{216} au maximum en extrayant et en annulant 9.
\frac{\frac{27}{8}}{1}
Multiplier 81 et \frac{1}{24} pour obtenir \frac{27}{8}.
\frac{27}{8}
Tout nombre divisé par 1 donne lui-même.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}