Calculer a
a=-k+\frac{y}{x}
x\neq 0
Calculer k
k=-a+\frac{y}{x}
x\neq 0
Graphique
Partager
Copié dans le Presse-papiers
y-kx=ax
Multiplier les deux côtés de l’équation par x.
ax=y-kx
Échanger les côtés afin que tous les termes de variable soient à gauche.
xa=y-kx
L’équation utilise le format standard.
\frac{xa}{x}=\frac{y-kx}{x}
Divisez les deux côtés par x.
a=\frac{y-kx}{x}
La division par x annule la multiplication par x.
a=-k+\frac{y}{x}
Diviser y-xk par x.
y-kx=ax
Multiplier les deux côtés de l’équation par x.
-kx=ax-y
Soustraire y des deux côtés.
\left(-x\right)k=ax-y
L’équation utilise le format standard.
\frac{\left(-x\right)k}{-x}=\frac{ax-y}{-x}
Divisez les deux côtés par -x.
k=\frac{ax-y}{-x}
La division par -x annule la multiplication par -x.
k=-a+\frac{y}{x}
Diviser ax-y par -x.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}