Calculer s
s=-\frac{15\left(x-208\right)}{x^{2}}
x\neq 0
Calculer x (solution complexe)
\left\{\begin{matrix}x=\frac{\sqrt{15\left(832s+15\right)}-15}{2s}\text{; }x=-\frac{\sqrt{15}\left(\sqrt{832s+15}+\sqrt{15}\right)}{2s}\text{, }&s\neq 0\\x=208\text{, }&s=0\end{matrix}\right,
Calculer x
\left\{\begin{matrix}x=\frac{\sqrt{15\left(832s+15\right)}-15}{2s}\text{; }x=-\frac{\sqrt{15}\left(\sqrt{832s+15}+\sqrt{15}\right)}{2s}\text{, }&s\neq 0\text{ and }s\geq -\frac{15}{832}\\x=208\text{, }&s=0\end{matrix}\right,
Graphique
Partager
Copié dans le Presse-papiers
4x\times 3+3x\times 4+2xxs+12\left(\frac{x}{4}-8\right)\times 2=6048
Multipliez les deux côtés de l’équation par 12, le plus petit commun multiple de 3,4,6.
4x\times 3+3x\times 4+2x^{2}s+12\left(\frac{x}{4}-8\right)\times 2=6048
Multiplier x et x pour obtenir x^{2}.
12x+3x\times 4+2x^{2}s+12\left(\frac{x}{4}-8\right)\times 2=6048
Multiplier 4 et 3 pour obtenir 12.
12x+12x+2x^{2}s+12\left(\frac{x}{4}-8\right)\times 2=6048
Multiplier 3 et 4 pour obtenir 12.
24x+2x^{2}s+12\left(\frac{x}{4}-8\right)\times 2=6048
Combiner 12x et 12x pour obtenir 24x.
24x+2x^{2}s+24\left(\frac{x}{4}-8\right)=6048
Multiplier 12 et 2 pour obtenir 24.
24x+2x^{2}s+24\times \frac{x}{4}-192=6048
Utiliser la distributivité pour multiplier 24 par \frac{x}{4}-8.
24x+2x^{2}s+6x-192=6048
Annulez le facteur commun le plus grand 4 dans 24 et 4.
30x+2x^{2}s-192=6048
Combiner 24x et 6x pour obtenir 30x.
2x^{2}s-192=6048-30x
Soustraire 30x des deux côtés.
2x^{2}s=6048-30x+192
Ajouter 192 aux deux côtés.
2x^{2}s=6240-30x
Additionner 6048 et 192 pour obtenir 6240.
\frac{2x^{2}s}{2x^{2}}=\frac{6240-30x}{2x^{2}}
Divisez les deux côtés par 2x^{2}.
s=\frac{6240-30x}{2x^{2}}
La division par 2x^{2} annule la multiplication par 2x^{2}.
s=\frac{15\left(208-x\right)}{x^{2}}
Diviser 6240-30x par 2x^{2}.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}