Calculer x
x=-6
Graphique
Partager
Copié dans le Presse-papiers
\left(x-2\right)\left(11x-18\right)\left(x+1\right)+\left(x-1\right)\left(11x-18\right)\left(x+2\right)=\left(x-2\right)\left(x-1\right)\left(22x+30\right)
La variable x ne peut pas être égale à une des valeurs 1,\frac{18}{11},2 étant donné que la division par zéro n’est pas définie. Multipliez les deux côtés de l’équation par \left(x-2\right)\left(x-1\right)\left(11x-18\right), le plus petit commun multiple de x-1,x-2,11x-18.
\left(11x^{2}-40x+36\right)\left(x+1\right)+\left(x-1\right)\left(11x-18\right)\left(x+2\right)=\left(x-2\right)\left(x-1\right)\left(22x+30\right)
Utilisez la distributivité pour multiplier x-2 par 11x-18 et combiner les termes semblables.
11x^{3}-29x^{2}-4x+36+\left(x-1\right)\left(11x-18\right)\left(x+2\right)=\left(x-2\right)\left(x-1\right)\left(22x+30\right)
Utilisez la distributivité pour multiplier 11x^{2}-40x+36 par x+1 et combiner les termes semblables.
11x^{3}-29x^{2}-4x+36+\left(11x^{2}-29x+18\right)\left(x+2\right)=\left(x-2\right)\left(x-1\right)\left(22x+30\right)
Utilisez la distributivité pour multiplier x-1 par 11x-18 et combiner les termes semblables.
11x^{3}-29x^{2}-4x+36+11x^{3}-7x^{2}-40x+36=\left(x-2\right)\left(x-1\right)\left(22x+30\right)
Utilisez la distributivité pour multiplier 11x^{2}-29x+18 par x+2 et combiner les termes semblables.
22x^{3}-29x^{2}-4x+36-7x^{2}-40x+36=\left(x-2\right)\left(x-1\right)\left(22x+30\right)
Combiner 11x^{3} et 11x^{3} pour obtenir 22x^{3}.
22x^{3}-36x^{2}-4x+36-40x+36=\left(x-2\right)\left(x-1\right)\left(22x+30\right)
Combiner -29x^{2} et -7x^{2} pour obtenir -36x^{2}.
22x^{3}-36x^{2}-44x+36+36=\left(x-2\right)\left(x-1\right)\left(22x+30\right)
Combiner -4x et -40x pour obtenir -44x.
22x^{3}-36x^{2}-44x+72=\left(x-2\right)\left(x-1\right)\left(22x+30\right)
Additionner 36 et 36 pour obtenir 72.
22x^{3}-36x^{2}-44x+72=\left(x^{2}-3x+2\right)\left(22x+30\right)
Utilisez la distributivité pour multiplier x-2 par x-1 et combiner les termes semblables.
22x^{3}-36x^{2}-44x+72=22x^{3}-36x^{2}-46x+60
Utilisez la distributivité pour multiplier x^{2}-3x+2 par 22x+30 et combiner les termes semblables.
22x^{3}-36x^{2}-44x+72-22x^{3}=-36x^{2}-46x+60
Soustraire 22x^{3} des deux côtés.
-36x^{2}-44x+72=-36x^{2}-46x+60
Combiner 22x^{3} et -22x^{3} pour obtenir 0.
-36x^{2}-44x+72+36x^{2}=-46x+60
Ajouter 36x^{2} aux deux côtés.
-44x+72=-46x+60
Combiner -36x^{2} et 36x^{2} pour obtenir 0.
-44x+72+46x=60
Ajouter 46x aux deux côtés.
2x+72=60
Combiner -44x et 46x pour obtenir 2x.
2x=60-72
Soustraire 72 des deux côtés.
2x=-12
Soustraire 72 de 60 pour obtenir -12.
x=\frac{-12}{2}
Divisez les deux côtés par 2.
x=-6
Diviser -12 par 2 pour obtenir -6.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}