Calculer F
F=\frac{j\left(w+M\right)}{w}
j\neq 0\text{ and }w\neq 0
Calculer M
M=\frac{w\left(F-j\right)}{j}
j\neq 0\text{ and }w\neq 0
Partager
Copié dans le Presse-papiers
wF=j\left(M+w\right)
Multipliez les deux côtés de l’équation par jw, le plus petit commun multiple de j,w.
wF=jM+jw
Utiliser la distributivité pour multiplier j par M+w.
wF=jw+Mj
L’équation utilise le format standard.
\frac{wF}{w}=\frac{j\left(w+M\right)}{w}
Divisez les deux côtés par w.
F=\frac{j\left(w+M\right)}{w}
La division par w annule la multiplication par w.
wF=j\left(M+w\right)
Multipliez les deux côtés de l’équation par jw, le plus petit commun multiple de j,w.
wF=jM+jw
Utiliser la distributivité pour multiplier j par M+w.
jM+jw=wF
Échanger les côtés afin que tous les termes de variable soient à gauche.
jM=wF-jw
Soustraire jw des deux côtés.
jM=Fw-jw
L’équation utilise le format standard.
\frac{jM}{j}=\frac{w\left(F-j\right)}{j}
Divisez les deux côtés par j.
M=\frac{w\left(F-j\right)}{j}
La division par j annule la multiplication par j.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}