Calculer x
x=\frac{1}{4}=0,25
Graphique
Quiz
Linear Equation
5 problèmes semblables à :
\frac { 2 x - 1 } { 4 x } = \frac { x - 1 } { 2 x + 1 }
Partager
Copié dans le Presse-papiers
\left(2x+1\right)\left(2x-1\right)=4x\left(x-1\right)
La variable x ne peut pas être égale à une des valeurs -\frac{1}{2},0 étant donné que la division par zéro n’est pas définie. Multipliez les deux côtés de l’équation par 4x\left(2x+1\right), le plus petit commun multiple de 4x,2x+1.
\left(2x\right)^{2}-1=4x\left(x-1\right)
Considérer \left(2x+1\right)\left(2x-1\right). Une multiplication peut être transformée en différence de carrés à l’aide de la règle suivante : \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Calculer le carré de 1.
2^{2}x^{2}-1=4x\left(x-1\right)
Étendre \left(2x\right)^{2}.
4x^{2}-1=4x\left(x-1\right)
Calculer 2 à la puissance 2 et obtenir 4.
4x^{2}-1=4x^{2}-4x
Utiliser la distributivité pour multiplier 4x par x-1.
4x^{2}-1-4x^{2}=-4x
Soustraire 4x^{2} des deux côtés.
-1=-4x
Combiner 4x^{2} et -4x^{2} pour obtenir 0.
-4x=-1
Échanger les côtés afin que tous les termes de variable soient à gauche.
x=\frac{-1}{-4}
Divisez les deux côtés par -4.
x=\frac{1}{4}
La fraction \frac{-1}{-4} peut être simplifiée en \frac{1}{4} en supprimant le signe négatif du numérateur et du dénominateur.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}