Différencier w.r.t. t
\frac{2t^{2}\left(3t^{2}-4t-21\right)}{-9t^{4}+12t^{3}+38t^{2}-28t-49}
Évaluer
\frac{2t^{3}}{7+2t-3t^{2}}
Partager
Copié dans le Presse-papiers
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{2t^{3}}{7-3t^{2}+2t})
Additionner 3 et 4 pour obtenir 7.
\frac{\left(-3t^{2}+2t^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}t}(2t^{3})-2t^{3}\frac{\mathrm{d}}{\mathrm{d}t}(-3t^{2}+2t^{1}+7)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Pour deux fonctions dérivables, la dérivée du quotient des deux fonctions est le dénominateur fois la dérivée du numérateur moins le numérateur fois la dérivée du dénominateur, le tout divisé par le dénominateur au carré.
\frac{\left(-3t^{2}+2t^{1}+7\right)\times 3\times 2t^{3-1}-2t^{3}\left(2\left(-3\right)t^{2-1}+2t^{1-1}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
La dérivée d’un polynôme est la somme des dérivées de ses termes. La dérivée d’un terme constant est 0. La dérivée de ax^{n} est nax^{n-1}.
\frac{\left(-3t^{2}+2t^{1}+7\right)\times 6t^{2}-2t^{3}\left(-6t^{1}+2t^{0}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Simplifier.
\frac{-3t^{2}\times 6t^{2}+2t^{1}\times 6t^{2}+7\times 6t^{2}-2t^{3}\left(-6t^{1}+2t^{0}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Multiplier -3t^{2}+2t^{1}+7 par 6t^{2}.
\frac{-3t^{2}\times 6t^{2}+2t^{1}\times 6t^{2}+7\times 6t^{2}-\left(2t^{3}\left(-6\right)t^{1}+2t^{3}\times 2t^{0}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Multiplier 2t^{3} par -6t^{1}+2t^{0}.
\frac{-3\times 6t^{2+2}+2\times 6t^{1+2}+7\times 6t^{2}-\left(2\left(-6\right)t^{3+1}+2\times 2t^{3}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Pour multiplier les puissances de la même base, additionnez leurs exposants.
\frac{-18t^{4}+12t^{3}+42t^{2}-\left(-12t^{4}+4t^{3}\right)}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Simplifier.
\frac{-6t^{4}+8t^{3}+42t^{2}}{\left(-3t^{2}+2t^{1}+7\right)^{2}}
Combiner des termes semblables.
\frac{-6t^{4}+8t^{3}+42t^{2}}{\left(-3t^{2}+2t+7\right)^{2}}
Pour n’importe quel terme t, t^{1}=t.
\frac{2t^{3}}{7-3t^{2}+2t}
Additionner 3 et 4 pour obtenir 7.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}