Évaluer
\frac{8}{729}\approx 0,010973937
Factoriser
\frac{2 ^ {3}}{3 ^ {6}} = 0,010973936899862825
Partager
Copié dans le Presse-papiers
\frac{18^{-4}\times 81}{6^{3}\times 108\times 24^{-4}}
Pour élever une puissance à une autre puissance, multipliez les exposants. Multipliez 2 par -2 pour obtenir -4.
\frac{3\times 18^{-4}}{4\times 6^{3}\times 24^{-4}}
Annuler 27 dans le numérateur et le dénominateur.
\frac{3\times \frac{1}{104976}}{4\times 6^{3}\times 24^{-4}}
Calculer 18 à la puissance -4 et obtenir \frac{1}{104976}.
\frac{\frac{1}{34992}}{4\times 6^{3}\times 24^{-4}}
Multiplier 3 et \frac{1}{104976} pour obtenir \frac{1}{34992}.
\frac{\frac{1}{34992}}{4\times 216\times 24^{-4}}
Calculer 6 à la puissance 3 et obtenir 216.
\frac{\frac{1}{34992}}{864\times 24^{-4}}
Multiplier 4 et 216 pour obtenir 864.
\frac{\frac{1}{34992}}{864\times \frac{1}{331776}}
Calculer 24 à la puissance -4 et obtenir \frac{1}{331776}.
\frac{\frac{1}{34992}}{\frac{1}{384}}
Multiplier 864 et \frac{1}{331776} pour obtenir \frac{1}{384}.
\frac{1}{34992}\times 384
Diviser \frac{1}{34992} par \frac{1}{384} en multipliant \frac{1}{34992} par la réciproque de \frac{1}{384}.
\frac{8}{729}
Multiplier \frac{1}{34992} et 384 pour obtenir \frac{8}{729}.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}