Aller au contenu principal
Évaluer
Tick mark Image

Problèmes similaires dans la recherche Web

Partager

\frac{2-\sqrt{3}}{\sqrt{7}+\sqrt{3}}+\frac{\sqrt{4}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}
Calculer la racine carrée de 4 et obtenir 2.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}+\frac{\sqrt{4}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}
Rationaliser le dénominateur de \frac{2-\sqrt{3}}{\sqrt{7}+\sqrt{3}} en multipliant le numérateur et le dénominateur par \sqrt{7}-\sqrt{3}.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{\sqrt{4}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}
Considérer \left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right). Une multiplication peut être transformée en différence de carrés à l’aide de la règle suivante : \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{7-3}+\frac{\sqrt{4}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}
Calculer le carré de \sqrt{7}. Calculer le carré de \sqrt{3}.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{\sqrt{4}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}
Soustraire 3 de 7 pour obtenir 4.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{2+\sqrt{3}}{\sqrt{7}-\sqrt{3}}
Calculer la racine carrée de 4 et obtenir 2.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}{\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}
Rationaliser le dénominateur de \frac{2+\sqrt{3}}{\sqrt{7}-\sqrt{3}} en multipliant le numérateur et le dénominateur par \sqrt{7}+\sqrt{3}.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Considérer \left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right). Une multiplication peut être transformée en différence de carrés à l’aide de la règle suivante : \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}{7-3}
Calculer le carré de \sqrt{7}. Calculer le carré de \sqrt{3}.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}{4}
Soustraire 3 de 7 pour obtenir 4.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)+\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}{4}
Étant donné que \frac{\left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}{4} et \frac{\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}{4} ont un dénominateur commun, additionnez-les en additionnant leur numérateur.
\frac{2\sqrt{7}-2\sqrt{3}-\sqrt{21}+3+2\sqrt{7}+2\sqrt{3}+\sqrt{21}+3}{4}
Effectuez les multiplications dans \left(2-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)+\left(2+\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right).
\frac{4\sqrt{7}+6}{4}
Effectuer les calculs dans 2\sqrt{7}-2\sqrt{3}-\sqrt{21}+3+2\sqrt{7}+2\sqrt{3}+\sqrt{21}+3.