Calculer E
\left\{\begin{matrix}\\E=Tcm\text{, }&\text{unconditionally}\\E\in \mathrm{R}\text{, }&\Delta =0\end{matrix}\right,
Calculer T
\left\{\begin{matrix}T=\frac{E}{cm}\text{, }&m\neq 0\text{ and }c\neq 0\\T\in \mathrm{R}\text{, }&\Delta =0\text{ or }\left(E=0\text{ and }m=0\right)\text{ or }\left(E=0\text{ and }c=0\text{ and }m\neq 0\right)\end{matrix}\right,
Partager
Copié dans le Presse-papiers
\Delta E=Tcm\Delta
L’équation utilise le format standard.
\frac{\Delta E}{\Delta }=\frac{Tcm\Delta }{\Delta }
Divisez les deux côtés par \Delta .
E=\frac{Tcm\Delta }{\Delta }
La division par \Delta annule la multiplication par \Delta .
E=Tcm
Diviser cm\Delta T par \Delta .
cm\Delta T=\Delta E
Échanger les côtés afin que tous les termes de variable soient à gauche.
cm\Delta T=E\Delta
L’équation utilise le format standard.
\frac{cm\Delta T}{cm\Delta }=\frac{E\Delta }{cm\Delta }
Divisez les deux côtés par cm\Delta .
T=\frac{E\Delta }{cm\Delta }
La division par cm\Delta annule la multiplication par cm\Delta .
T=\frac{E}{cm}
Diviser \Delta E par cm\Delta .
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}