Aller au contenu principal
Évaluer
Tick mark Image
Développer
Tick mark Image

Problèmes similaires dans la recherche Web

Partager

\frac{x^{2}y^{2}x-2x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Étendre \left(xy\right)^{2}.
\frac{x^{3}y^{2}-2x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Pour multiplier les puissances de la même base, additionnez leurs exposants. Additionnez 2 et 1 pour obtenir 3.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Combiner x^{3}y^{2} et -2x^{3}y^{2} pour obtenir -x^{3}y^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}\right)^{2}x^{2}y^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Étendre \left(-\frac{1}{2}xy\right)^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\frac{1}{4}x^{2}y^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Calculer -\frac{1}{2} à la puissance 2 et obtenir \frac{1}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{2}y^{3}}{\frac{1}{4}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Annuler x^{2}y^{2} dans le numérateur et le dénominateur.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Diviser -3x^{2}y^{3} par \frac{1}{4} en multipliant -3x^{2}y^{3} par la réciproque de \frac{1}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{2^{2}x^{2}y^{2}}+2xy}
Étendre \left(2xy\right)^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{4x^{2}y^{2}}+2xy}
Calculer 2 à la puissance 2 et obtenir 4.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy}{4}+2xy}
Annuler x^{2}y^{2} dans le numérateur et le dénominateur.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy}{4}+\frac{4\times 2xy}{4}}
Pour ajouter ou soustraire des expressions, développez-les pour rendre leurs dénominateurs identiques. Multiplier 2xy par \frac{4}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy+4\times 2xy}{4}}
Étant donné que \frac{-3xy}{4} et \frac{4\times 2xy}{4} ont un dénominateur commun, additionnez-les en additionnant leur numérateur.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy+8xy}{4}}
Effectuez les multiplications dans -3xy+4\times 2xy.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{5xy}{4}}
Combiner des termes semblables dans -3xy+8xy.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-12x^{2}y^{3}}{\frac{5xy}{4}}
Multiplier -3 et 4 pour obtenir -12.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-10x^{2}y^{3}}{\frac{5xy}{4}}
Combiner 2x^{2}y^{3} et -12x^{2}y^{3} pour obtenir -10x^{2}y^{3}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-10x^{2}y^{3}\times 4}{5xy}
Diviser -10x^{2}y^{3} par \frac{5xy}{4} en multipliant -10x^{2}y^{3} par la réciproque de \frac{5xy}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}-2\times 4xy^{2}
Annuler 5xy dans le numérateur et le dénominateur.
\frac{-x^{3}y^{2}}{-x^{2}}-8xy^{2}
Multiplier -2 et 4 pour obtenir -8.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-8xy^{2}\left(-1\right)x^{2}}{-x^{2}}
Pour ajouter ou soustraire des expressions, développez-les pour rendre leurs dénominateurs identiques. Multiplier -8xy^{2} par \frac{-x^{2}}{-x^{2}}.
\frac{-x^{3}y^{2}-8xy^{2}\left(-1\right)x^{2}}{-x^{2}}
Étant donné que \frac{-x^{3}y^{2}}{-x^{2}} et \frac{-8xy^{2}\left(-1\right)x^{2}}{-x^{2}} ont un dénominateur commun, additionnez-les en additionnant leur numérateur.
\frac{-x^{3}y^{2}+8x^{3}y^{2}}{-x^{2}}
Effectuez les multiplications dans -x^{3}y^{2}-8xy^{2}\left(-1\right)x^{2}.
\frac{7x^{3}y^{2}}{-x^{2}}
Combiner des termes semblables dans -x^{3}y^{2}+8x^{3}y^{2}.
\frac{7xy^{2}}{-1}
Annuler x^{2} dans le numérateur et le dénominateur.
\frac{x^{2}y^{2}x-2x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Étendre \left(xy\right)^{2}.
\frac{x^{3}y^{2}-2x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Pour multiplier les puissances de la même base, additionnez leurs exposants. Additionnez 2 et 1 pour obtenir 3.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Combiner x^{3}y^{2} et -2x^{3}y^{2} pour obtenir -x^{3}y^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}\right)^{2}x^{2}y^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Étendre \left(-\frac{1}{2}xy\right)^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\frac{1}{4}x^{2}y^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Calculer -\frac{1}{2} à la puissance 2 et obtenir \frac{1}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{2}y^{3}}{\frac{1}{4}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Annuler x^{2}y^{2} dans le numérateur et le dénominateur.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Diviser -3x^{2}y^{3} par \frac{1}{4} en multipliant -3x^{2}y^{3} par la réciproque de \frac{1}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{2^{2}x^{2}y^{2}}+2xy}
Étendre \left(2xy\right)^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{4x^{2}y^{2}}+2xy}
Calculer 2 à la puissance 2 et obtenir 4.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy}{4}+2xy}
Annuler x^{2}y^{2} dans le numérateur et le dénominateur.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy}{4}+\frac{4\times 2xy}{4}}
Pour ajouter ou soustraire des expressions, développez-les pour rendre leurs dénominateurs identiques. Multiplier 2xy par \frac{4}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy+4\times 2xy}{4}}
Étant donné que \frac{-3xy}{4} et \frac{4\times 2xy}{4} ont un dénominateur commun, additionnez-les en additionnant leur numérateur.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy+8xy}{4}}
Effectuez les multiplications dans -3xy+4\times 2xy.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{5xy}{4}}
Combiner des termes semblables dans -3xy+8xy.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-12x^{2}y^{3}}{\frac{5xy}{4}}
Multiplier -3 et 4 pour obtenir -12.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-10x^{2}y^{3}}{\frac{5xy}{4}}
Combiner 2x^{2}y^{3} et -12x^{2}y^{3} pour obtenir -10x^{2}y^{3}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-10x^{2}y^{3}\times 4}{5xy}
Diviser -10x^{2}y^{3} par \frac{5xy}{4} en multipliant -10x^{2}y^{3} par la réciproque de \frac{5xy}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}-2\times 4xy^{2}
Annuler 5xy dans le numérateur et le dénominateur.
\frac{-x^{3}y^{2}}{-x^{2}}-8xy^{2}
Multiplier -2 et 4 pour obtenir -8.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-8xy^{2}\left(-1\right)x^{2}}{-x^{2}}
Pour ajouter ou soustraire des expressions, développez-les pour rendre leurs dénominateurs identiques. Multiplier -8xy^{2} par \frac{-x^{2}}{-x^{2}}.
\frac{-x^{3}y^{2}-8xy^{2}\left(-1\right)x^{2}}{-x^{2}}
Étant donné que \frac{-x^{3}y^{2}}{-x^{2}} et \frac{-8xy^{2}\left(-1\right)x^{2}}{-x^{2}} ont un dénominateur commun, additionnez-les en additionnant leur numérateur.
\frac{-x^{3}y^{2}+8x^{3}y^{2}}{-x^{2}}
Effectuez les multiplications dans -x^{3}y^{2}-8xy^{2}\left(-1\right)x^{2}.
\frac{7x^{3}y^{2}}{-x^{2}}
Combiner des termes semblables dans -x^{3}y^{2}+8x^{3}y^{2}.
\frac{7xy^{2}}{-1}
Annuler x^{2} dans le numérateur et le dénominateur.