Évaluer
0
Factoriser
0
Partager
Copié dans le Presse-papiers
\left(x^{3}-\frac{3}{2}x^{2}y+\frac{3}{4}xy^{2}-\frac{1}{8}y^{3}+\frac{3}{2}xy\left(x-\frac{1}{2}y\right)\right)\left(\frac{1}{8}y^{3}+x^{3}\right)-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
Utilisez la formule du binôme \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} pour développer \left(x-\frac{1}{2}y\right)^{3}.
\left(x^{3}-\frac{3}{2}x^{2}y+\frac{3}{4}xy^{2}-\frac{1}{8}y^{3}+\frac{3}{2}yx^{2}-\frac{3}{4}xy^{2}\right)\left(\frac{1}{8}y^{3}+x^{3}\right)-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
Utiliser la distributivité pour multiplier \frac{3}{2}xy par x-\frac{1}{2}y.
\left(x^{3}+\frac{3}{4}xy^{2}-\frac{1}{8}y^{3}-\frac{3}{4}xy^{2}\right)\left(\frac{1}{8}y^{3}+x^{3}\right)-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
Combiner -\frac{3}{2}x^{2}y et \frac{3}{2}yx^{2} pour obtenir 0.
\left(x^{3}-\frac{1}{8}y^{3}\right)\left(\frac{1}{8}y^{3}+x^{3}\right)-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
Combiner \frac{3}{4}xy^{2} et -\frac{3}{4}xy^{2} pour obtenir 0.
\left(x^{3}\right)^{2}-\left(\frac{1}{8}y^{3}\right)^{2}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
Considérer \left(x^{3}-\frac{1}{8}y^{3}\right)\left(\frac{1}{8}y^{3}+x^{3}\right). Une multiplication peut être transformée en différence de carrés à l’aide de la règle suivante : \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{6}-\left(\frac{1}{8}y^{3}\right)^{2}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
Pour élever une puissance à une autre puissance, multipliez les exposants. Multipliez 3 par 2 pour obtenir 6.
x^{6}-\left(\frac{1}{8}\right)^{2}\left(y^{3}\right)^{2}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
Étendre \left(\frac{1}{8}y^{3}\right)^{2}.
x^{6}-\left(\frac{1}{8}\right)^{2}y^{6}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
Pour élever une puissance à une autre puissance, multipliez les exposants. Multipliez 3 par 2 pour obtenir 6.
x^{6}-\frac{1}{64}y^{6}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
Calculer \frac{1}{8} à la puissance 2 et obtenir \frac{1}{64}.
x^{6}-\frac{1}{64}y^{6}-\left(-\frac{1}{4}\right)^{3}\left(y^{2}\right)^{3}-x^{6}
Étendre \left(-\frac{1}{4}y^{2}\right)^{3}.
x^{6}-\frac{1}{64}y^{6}-\left(-\frac{1}{4}\right)^{3}y^{6}-x^{6}
Pour élever une puissance à une autre puissance, multipliez les exposants. Multipliez 2 par 3 pour obtenir 6.
x^{6}-\frac{1}{64}y^{6}-\left(-\frac{1}{64}y^{6}\right)-x^{6}
Calculer -\frac{1}{4} à la puissance 3 et obtenir -\frac{1}{64}.
x^{6}-\frac{1}{64}y^{6}+\frac{1}{64}y^{6}-x^{6}
L’inverse de -\frac{1}{64}y^{6} est \frac{1}{64}y^{6}.
x^{6}-x^{6}
Combiner -\frac{1}{64}y^{6} et \frac{1}{64}y^{6} pour obtenir 0.
0
Combiner x^{6} et -x^{6} pour obtenir 0.
\frac{\left(\left(2x-y\right)^{3}+6xy\left(2x-y\right)\right)\left(y^{3}+8x^{3}\right)+y^{6}-64x^{6}}{64}
Exclure \frac{1}{64}.
0
Simplifier.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}