Évaluer
14a^{4}+2b+7
Développer
14a^{4}+2b+7
Partager
Copié dans le Presse-papiers
\left(4-a^{2}-2\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Considérer \left(2-a\right)\left(2+a\right). Une multiplication peut être transformée en différence de carrés à l’aide de la règle suivante : \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Calculer le carré de 2.
\left(2-a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Soustraire 2 de 4 pour obtenir 2.
8-12a^{2}+6\left(a^{2}\right)^{2}-\left(a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Utilisez la formule du binôme \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} pour développer \left(2-a^{2}\right)^{3}.
8-12a^{2}+6a^{4}-\left(a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Pour élever une puissance à une autre puissance, multipliez les exposants. Multipliez 2 par 2 pour obtenir 4.
8-12a^{2}+6a^{4}-a^{6}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Pour élever une puissance à une autre puissance, multipliez les exposants. Multipliez 2 par 3 pour obtenir 6.
8-12a^{2}+6a^{4}-a^{6}-\left(4a^{4}+4a^{2}+b^{2}-4ba^{2}-2b+1\right)+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Calculer le carré de 2a^{2}-b+1.
8-12a^{2}+6a^{4}-a^{6}-4a^{4}-4a^{2}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Pour trouver l’opposé de 4a^{4}+4a^{2}+b^{2}-4ba^{2}-2b+1, recherchez l’opposé de chaque terme.
8-12a^{2}+2a^{4}-a^{6}-4a^{2}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Combiner 6a^{4} et -4a^{4} pour obtenir 2a^{4}.
8-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Combiner -12a^{2} et -4a^{2} pour obtenir -16a^{2}.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Soustraire 1 de 8 pour obtenir 7.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(\left(a^{2}\right)^{2}+8a^{2}+16\right)+\left(b-2a^{2}\right)^{2}
Utilisez la formule du binôme \left(p+q\right)^{2}=p^{2}+2pq+q^{2} pour développer \left(a^{2}+4\right)^{2}.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(a^{4}+8a^{2}+16\right)+\left(b-2a^{2}\right)^{2}
Pour élever une puissance à une autre puissance, multipliez les exposants. Multipliez 2 par 2 pour obtenir 4.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{6}+8a^{4}+16a^{2}+\left(b-2a^{2}\right)^{2}
Utiliser la distributivité pour multiplier a^{2} par a^{4}+8a^{2}+16.
7-16a^{2}+2a^{4}-b^{2}+4ba^{2}+2b+8a^{4}+16a^{2}+\left(b-2a^{2}\right)^{2}
Combiner -a^{6} et a^{6} pour obtenir 0.
7-16a^{2}+10a^{4}-b^{2}+4ba^{2}+2b+16a^{2}+\left(b-2a^{2}\right)^{2}
Combiner 2a^{4} et 8a^{4} pour obtenir 10a^{4}.
7+10a^{4}-b^{2}+4ba^{2}+2b+\left(b-2a^{2}\right)^{2}
Combiner -16a^{2} et 16a^{2} pour obtenir 0.
7+10a^{4}-b^{2}+4ba^{2}+2b+b^{2}-4ba^{2}+4\left(a^{2}\right)^{2}
Utilisez la formule du binôme \left(p-q\right)^{2}=p^{2}-2pq+q^{2} pour développer \left(b-2a^{2}\right)^{2}.
7+10a^{4}-b^{2}+4ba^{2}+2b+b^{2}-4ba^{2}+4a^{4}
Pour élever une puissance à une autre puissance, multipliez les exposants. Multipliez 2 par 2 pour obtenir 4.
7+10a^{4}+4ba^{2}+2b-4ba^{2}+4a^{4}
Combiner -b^{2} et b^{2} pour obtenir 0.
7+10a^{4}+2b+4a^{4}
Combiner 4ba^{2} et -4ba^{2} pour obtenir 0.
7+14a^{4}+2b
Combiner 10a^{4} et 4a^{4} pour obtenir 14a^{4}.
\left(4-a^{2}-2\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Considérer \left(2-a\right)\left(2+a\right). Une multiplication peut être transformée en différence de carrés à l’aide de la règle suivante : \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Calculer le carré de 2.
\left(2-a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Soustraire 2 de 4 pour obtenir 2.
8-12a^{2}+6\left(a^{2}\right)^{2}-\left(a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Utilisez la formule du binôme \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} pour développer \left(2-a^{2}\right)^{3}.
8-12a^{2}+6a^{4}-\left(a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Pour élever une puissance à une autre puissance, multipliez les exposants. Multipliez 2 par 2 pour obtenir 4.
8-12a^{2}+6a^{4}-a^{6}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Pour élever une puissance à une autre puissance, multipliez les exposants. Multipliez 2 par 3 pour obtenir 6.
8-12a^{2}+6a^{4}-a^{6}-\left(4a^{4}+4a^{2}+b^{2}-4ba^{2}-2b+1\right)+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Calculer le carré de 2a^{2}-b+1.
8-12a^{2}+6a^{4}-a^{6}-4a^{4}-4a^{2}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Pour trouver l’opposé de 4a^{4}+4a^{2}+b^{2}-4ba^{2}-2b+1, recherchez l’opposé de chaque terme.
8-12a^{2}+2a^{4}-a^{6}-4a^{2}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Combiner 6a^{4} et -4a^{4} pour obtenir 2a^{4}.
8-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Combiner -12a^{2} et -4a^{2} pour obtenir -16a^{2}.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Soustraire 1 de 8 pour obtenir 7.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(\left(a^{2}\right)^{2}+8a^{2}+16\right)+\left(b-2a^{2}\right)^{2}
Utilisez la formule du binôme \left(p+q\right)^{2}=p^{2}+2pq+q^{2} pour développer \left(a^{2}+4\right)^{2}.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(a^{4}+8a^{2}+16\right)+\left(b-2a^{2}\right)^{2}
Pour élever une puissance à une autre puissance, multipliez les exposants. Multipliez 2 par 2 pour obtenir 4.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{6}+8a^{4}+16a^{2}+\left(b-2a^{2}\right)^{2}
Utiliser la distributivité pour multiplier a^{2} par a^{4}+8a^{2}+16.
7-16a^{2}+2a^{4}-b^{2}+4ba^{2}+2b+8a^{4}+16a^{2}+\left(b-2a^{2}\right)^{2}
Combiner -a^{6} et a^{6} pour obtenir 0.
7-16a^{2}+10a^{4}-b^{2}+4ba^{2}+2b+16a^{2}+\left(b-2a^{2}\right)^{2}
Combiner 2a^{4} et 8a^{4} pour obtenir 10a^{4}.
7+10a^{4}-b^{2}+4ba^{2}+2b+\left(b-2a^{2}\right)^{2}
Combiner -16a^{2} et 16a^{2} pour obtenir 0.
7+10a^{4}-b^{2}+4ba^{2}+2b+b^{2}-4ba^{2}+4\left(a^{2}\right)^{2}
Utilisez la formule du binôme \left(p-q\right)^{2}=p^{2}-2pq+q^{2} pour développer \left(b-2a^{2}\right)^{2}.
7+10a^{4}-b^{2}+4ba^{2}+2b+b^{2}-4ba^{2}+4a^{4}
Pour élever une puissance à une autre puissance, multipliez les exposants. Multipliez 2 par 2 pour obtenir 4.
7+10a^{4}+4ba^{2}+2b-4ba^{2}+4a^{4}
Combiner -b^{2} et b^{2} pour obtenir 0.
7+10a^{4}+2b+4a^{4}
Combiner 4ba^{2} et -4ba^{2} pour obtenir 0.
7+14a^{4}+2b
Combiner 10a^{4} et 4a^{4} pour obtenir 14a^{4}.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}