Évaluer
\frac{6052246093750000000Nk^{3}}{3}
Développer
\frac{6052246093750000000Nk^{3}}{3}
Partager
Copié dans le Presse-papiers
\frac{67\times 10^{13}Nm^{2}kg^{-2}\times 6kg\times 74\times 10^{22}kg}{\left(384\times 10^{8}m\right)^{2}}
Pour multiplier les puissances de la même base, additionnez leurs exposants. Additionnez -11 et 24 pour obtenir 13.
\frac{67\times 10^{35}Nm^{2}kg^{-2}\times 6kg\times 74kg}{\left(384\times 10^{8}m\right)^{2}}
Pour multiplier les puissances de la même base, additionnez leurs exposants. Additionnez 13 et 22 pour obtenir 35.
\frac{67\times 10^{35}Nm^{2}k^{2}g^{-2}\times 6g\times 74kg}{\left(384\times 10^{8}m\right)^{2}}
Multiplier k et k pour obtenir k^{2}.
\frac{67\times 10^{35}Nm^{2}k^{3}g^{-2}\times 6g\times 74g}{\left(384\times 10^{8}m\right)^{2}}
Pour multiplier les puissances de la même base, additionnez leurs exposants. Additionnez 2 et 1 pour obtenir 3.
\frac{67\times 10^{35}Nm^{2}k^{3}g^{-1}\times 6\times 74g}{\left(384\times 10^{8}m\right)^{2}}
Pour multiplier les puissances de la même base, additionnez leurs exposants. Additionnez -2 et 1 pour obtenir -1.
\frac{67\times 10^{35}Nm^{2}k^{3}\times 6\times 74}{\left(384\times 10^{8}m\right)^{2}}
Multiplier g^{-1} et g pour obtenir 1.
\frac{67\times 100000000000000000000000000000000000Nm^{2}k^{3}\times 6\times 74}{\left(384\times 10^{8}m\right)^{2}}
Calculer 10 à la puissance 35 et obtenir 100000000000000000000000000000000000.
\frac{6700000000000000000000000000000000000Nm^{2}k^{3}\times 6\times 74}{\left(384\times 10^{8}m\right)^{2}}
Multiplier 67 et 100000000000000000000000000000000000 pour obtenir 6700000000000000000000000000000000000.
\frac{40200000000000000000000000000000000000Nm^{2}k^{3}\times 74}{\left(384\times 10^{8}m\right)^{2}}
Multiplier 6700000000000000000000000000000000000 et 6 pour obtenir 40200000000000000000000000000000000000.
\frac{2974800000000000000000000000000000000000Nm^{2}k^{3}}{\left(384\times 10^{8}m\right)^{2}}
Multiplier 40200000000000000000000000000000000000 et 74 pour obtenir 2974800000000000000000000000000000000000.
\frac{2974800000000000000000000000000000000000Nm^{2}k^{3}}{\left(384\times 100000000m\right)^{2}}
Calculer 10 à la puissance 8 et obtenir 100000000.
\frac{2974800000000000000000000000000000000000Nm^{2}k^{3}}{\left(38400000000m\right)^{2}}
Multiplier 384 et 100000000 pour obtenir 38400000000.
\frac{2974800000000000000000000000000000000000Nm^{2}k^{3}}{38400000000^{2}m^{2}}
Étendre \left(38400000000m\right)^{2}.
\frac{2974800000000000000000000000000000000000Nm^{2}k^{3}}{1474560000000000000000m^{2}}
Calculer 38400000000 à la puissance 2 et obtenir 1474560000000000000000.
\frac{6052246093750000000Nk^{3}}{3}
Annuler 491520000000000000000m^{2} dans le numérateur et le dénominateur.
\frac{67\times 10^{13}Nm^{2}kg^{-2}\times 6kg\times 74\times 10^{22}kg}{\left(384\times 10^{8}m\right)^{2}}
Pour multiplier les puissances de la même base, additionnez leurs exposants. Additionnez -11 et 24 pour obtenir 13.
\frac{67\times 10^{35}Nm^{2}kg^{-2}\times 6kg\times 74kg}{\left(384\times 10^{8}m\right)^{2}}
Pour multiplier les puissances de la même base, additionnez leurs exposants. Additionnez 13 et 22 pour obtenir 35.
\frac{67\times 10^{35}Nm^{2}k^{2}g^{-2}\times 6g\times 74kg}{\left(384\times 10^{8}m\right)^{2}}
Multiplier k et k pour obtenir k^{2}.
\frac{67\times 10^{35}Nm^{2}k^{3}g^{-2}\times 6g\times 74g}{\left(384\times 10^{8}m\right)^{2}}
Pour multiplier les puissances de la même base, additionnez leurs exposants. Additionnez 2 et 1 pour obtenir 3.
\frac{67\times 10^{35}Nm^{2}k^{3}g^{-1}\times 6\times 74g}{\left(384\times 10^{8}m\right)^{2}}
Pour multiplier les puissances de la même base, additionnez leurs exposants. Additionnez -2 et 1 pour obtenir -1.
\frac{67\times 10^{35}Nm^{2}k^{3}\times 6\times 74}{\left(384\times 10^{8}m\right)^{2}}
Multiplier g^{-1} et g pour obtenir 1.
\frac{67\times 100000000000000000000000000000000000Nm^{2}k^{3}\times 6\times 74}{\left(384\times 10^{8}m\right)^{2}}
Calculer 10 à la puissance 35 et obtenir 100000000000000000000000000000000000.
\frac{6700000000000000000000000000000000000Nm^{2}k^{3}\times 6\times 74}{\left(384\times 10^{8}m\right)^{2}}
Multiplier 67 et 100000000000000000000000000000000000 pour obtenir 6700000000000000000000000000000000000.
\frac{40200000000000000000000000000000000000Nm^{2}k^{3}\times 74}{\left(384\times 10^{8}m\right)^{2}}
Multiplier 6700000000000000000000000000000000000 et 6 pour obtenir 40200000000000000000000000000000000000.
\frac{2974800000000000000000000000000000000000Nm^{2}k^{3}}{\left(384\times 10^{8}m\right)^{2}}
Multiplier 40200000000000000000000000000000000000 et 74 pour obtenir 2974800000000000000000000000000000000000.
\frac{2974800000000000000000000000000000000000Nm^{2}k^{3}}{\left(384\times 100000000m\right)^{2}}
Calculer 10 à la puissance 8 et obtenir 100000000.
\frac{2974800000000000000000000000000000000000Nm^{2}k^{3}}{\left(38400000000m\right)^{2}}
Multiplier 384 et 100000000 pour obtenir 38400000000.
\frac{2974800000000000000000000000000000000000Nm^{2}k^{3}}{38400000000^{2}m^{2}}
Étendre \left(38400000000m\right)^{2}.
\frac{2974800000000000000000000000000000000000Nm^{2}k^{3}}{1474560000000000000000m^{2}}
Calculer 38400000000 à la puissance 2 et obtenir 1474560000000000000000.
\frac{6052246093750000000Nk^{3}}{3}
Annuler 491520000000000000000m^{2} dans le numérateur et le dénominateur.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}