Laktawan sa pangunahing nilalaman
Microsoft
|
Math Solver
Lutasin ang
Magsanay
Maglaro
Mga Paksa
Bago ang Algebra
Ibig sabihin nito
Mode
Pinakadakilang Karaniwang Kadahilanan
Pinakamaliit na Karaniwang Maramihan
Order ng mga Operasyon
Mga Bahagi
Mga Mixed Fraction
Prime Factorization
Mga Exponent
Mga Radikal
Algebra
Pagsamahin ang Tulad ng Mga Tuntunin
Lutasin para sa isang variable
Kadahilanan
Palawakin ang
Suriin ang mga Fraction
Mga Ekwasyon ng Linear
Mga Kwadratikong Ekwasyon
Mga hindi pagkakapantay pantay
Mga Sistema ng Mga Ekwasyon
Mga Matrice
Trigonometry
Pasimplehin ang
Suriin ang
Mga graph
Lutasin ang mga Equation
Calculus
Mga deribatibo
Mga Integral
Mga Limitasyon
Mga Input ng Algebra
Trigonometry Inputs
Mga Input ng Calculus
Mga Input ng Matrix
Lutasin ang
Magsanay
Maglaro
Mga Paksa
Bago ang Algebra
Ibig sabihin nito
Mode
Pinakadakilang Karaniwang Kadahilanan
Pinakamaliit na Karaniwang Maramihan
Order ng mga Operasyon
Mga Bahagi
Mga Mixed Fraction
Prime Factorization
Mga Exponent
Mga Radikal
Algebra
Pagsamahin ang Tulad ng Mga Tuntunin
Lutasin para sa isang variable
Kadahilanan
Palawakin ang
Suriin ang mga Fraction
Mga Ekwasyon ng Linear
Mga Kwadratikong Ekwasyon
Mga hindi pagkakapantay pantay
Mga Sistema ng Mga Ekwasyon
Mga Matrice
Trigonometry
Pasimplehin ang
Suriin ang
Mga graph
Lutasin ang mga Equation
Calculus
Mga deribatibo
Mga Integral
Mga Limitasyon
Mga Input ng Algebra
Trigonometry Inputs
Mga Input ng Calculus
Mga Input ng Matrix
Mga Pangunahing
algebra
trigonometry
calculus
Mga Estadisti
mga matrice
Mga Tauhan
I-solve ang x
x=\pi n_{1}+\frac{\pi }{4}
n_{1}\in \mathrm{Z}
Graph
I-graph ang Dalawang Dulo sa 2D
I-graph sa 2D
Quiz
Trigonometry
\sin ( x ) = \cos ( x )
Katulad na mga Problema mula sa Web Search
How to solve equations like 2 \sin(x) = \cos(x)
https://math.stackexchange.com/questions/1476944/how-to-solve-equations-like-2-sinx-cosx/1476973
One way can be using tan\frac x2=t so sin x=\frac{2t}{1+t^2} and cos x=\frac{1-t^2}{1+t^2}. Here 2sin x= cos x implies t^2+4t-1=0 from wich tan \frac x2=2\pm\sqrt{5}.Hence the answer of ...
How do you show that the equation \displaystyle{1}-{\sin{{x}}}={\cos{{x}}} is not an identity?
https://socratic.org/questions/how-do-you-show-that-the-equation-1-sinx-cosx-is-not-an-identity
Bdub Nov 12, 2016 Pick a value for x like \displaystyle\frac{\pi}{{3}} and plug it in to both side to show that they don't equal each other and therefore not an identity
How do you solve \displaystyle{1}+{\sin{{\left({x}\right)}}}={\cos{{\left({x}\right)}}} ?
https://socratic.org/questions/how-do-you-solve-1-sin-x-cos-x
\displaystyle{x}={0} Explanation: \displaystyle{1}+{\sin{{\left({x}\right)}}}={\cos{{\left({x}\right)}}}{\quad\text{or}\quad}{\cos{{x}}}-{\sin{{x}}}={1} . Squaring both sides we get \displaystyle{\left({\cos{{x}}}-{\sin{{x}}}\right)}^{{2}}={1}{\quad\text{or}\quad}{{\cos}^{{2}}{x}}+{{\sin}^{{2}}{x}}-{2}{\sin{{x}}}{\cos{{x}}}={1}{\quad\text{or}\quad}{1}-{\sin{{2}}}{x}={1}{\quad\text{or}\quad}{\sin{{2}}}{x}={0}={\sin{{0}}}; ...
Trigonometric equation \sin2x=\cos x
https://math.stackexchange.com/questions/3008492/trigonometric-equation-sin2x-cos-x
As @Nicholas Stull hinted, you lost solutions by not making sure that you were not dividing by zero. As @Winther pointed out, you can avoid this error by factoring. As @Nicholas Stull pointed out, ...
Is there a deeper understanding of the derivative of sin(x) = cos(x)?
https://math.stackexchange.com/q/2454114
Apropos "deeper way": 1) f(x) = f(-x), even fct. Examples: y=x^2, y=cos(x) f'(x) = -f'(-x), chain rule, odd fct. 2) f(x)=-f(-x), odd fct. Examples: y=x^3, y=sin(x). f'(x) = f'(-x), ...
Maximum area of a rectangle inscribed in the cos(x) function
https://math.stackexchange.com/q/2212333
Equations like x= \cos x or x=\cot x generally don't have algebraic solutions. As such, we would first want to note that such an x exists (e.g., by the Intermediate Value Theorem) and then use ...
Higit pang mga Mga Item
Ibahagi
Kopyahin
Kinopya sa clipboard
Katulad na mga Problema
\tan ( x )
\sec ( x )
\sin ( x ) = \cos ( x )
\cot ( x )
\cos ( x )
\csc ( x )
Bumalik sa itaas