Laktawan sa pangunahing nilalaman
Microsoft
|
Math Solver
Lutasin ang
Magsanay
Maglaro
Mga Paksa
Bago ang Algebra
Ibig sabihin nito
Mode
Pinakadakilang Karaniwang Kadahilanan
Pinakamaliit na Karaniwang Maramihan
Order ng mga Operasyon
Mga Bahagi
Mga Mixed Fraction
Prime Factorization
Mga Exponent
Mga Radikal
Algebra
Pagsamahin ang Tulad ng Mga Tuntunin
Lutasin para sa isang variable
Kadahilanan
Palawakin ang
Suriin ang mga Fraction
Mga Ekwasyon ng Linear
Mga Kwadratikong Ekwasyon
Mga hindi pagkakapantay pantay
Mga Sistema ng Mga Ekwasyon
Mga Matrice
Trigonometry
Pasimplehin ang
Suriin ang
Mga graph
Lutasin ang mga Equation
Calculus
Mga deribatibo
Mga Integral
Mga Limitasyon
Mga Input ng Algebra
Trigonometry Inputs
Mga Input ng Calculus
Mga Input ng Matrix
Lutasin ang
Magsanay
Maglaro
Mga Paksa
Bago ang Algebra
Ibig sabihin nito
Mode
Pinakadakilang Karaniwang Kadahilanan
Pinakamaliit na Karaniwang Maramihan
Order ng mga Operasyon
Mga Bahagi
Mga Mixed Fraction
Prime Factorization
Mga Exponent
Mga Radikal
Algebra
Pagsamahin ang Tulad ng Mga Tuntunin
Lutasin para sa isang variable
Kadahilanan
Palawakin ang
Suriin ang mga Fraction
Mga Ekwasyon ng Linear
Mga Kwadratikong Ekwasyon
Mga hindi pagkakapantay pantay
Mga Sistema ng Mga Ekwasyon
Mga Matrice
Trigonometry
Pasimplehin ang
Suriin ang
Mga graph
Lutasin ang mga Equation
Calculus
Mga deribatibo
Mga Integral
Mga Limitasyon
Mga Input ng Algebra
Trigonometry Inputs
Mga Input ng Calculus
Mga Input ng Matrix
Mga Pangunahing
algebra
trigonometry
calculus
Mga Estadisti
mga matrice
Mga Tauhan
I-evaluate
0
I-differentiate ang w.r.t. x
0
Quiz
Differentiation
\frac { d } { d x } ( 2 )
Katulad na mga Problema mula sa Web Search
let f be a differentiable function. Compute \frac{d}{dx}g(2), where g(x) = \frac{f(2x)}{x}.
https://math.stackexchange.com/questions/2351494/let-f-be-a-differentiable-function-compute-fracddxg2-where-gx
You have an extra 4 in the numerator here: i know that : \dfrac{d}{dx}g(2)=\dfrac{4(\dfrac{d}{dx}f(4))-4f(4)}{4} If g(x) = \dfrac{f(2x)}x, then \begin{align*} \frac d{dx} g(x) &= \frac d{dx} ...
How to rewrite \frac{d}{d(x+c)}? [closed]
https://math.stackexchange.com/questions/1376627/how-to-rewrite-fracddxc
Use the chain rule. Define u = x + c then use the fact that \frac{d\cdot}{dx} = \frac{du}{dx} \frac{d\cdot}{du} where the \cdot represents any function, so \frac{df}{dx} = \frac{du}{dx} \frac{df}{du} ...
What does is the meaning of \frac{d}{dx}+x in (\frac{d}{dx}+x)y=0?
https://math.stackexchange.com/q/1590756
The symbols d/dx and x should both be interpreted as linear operators acting on a vector space that the unknown function y belongs to. The sum of linear operators is well-defined and that is ...
Intuitive explanation of \frac{\mathrm{d}}{\mathrm{d}x}=0?
https://math.stackexchange.com/questions/2894024/intuitive-explanation-of-frac-mathrmd-mathrmdx-0
Not sure about the problem but the strength of the electrical field, E, depends on your distance from it, which I assume is x. \frac{dE}{dx} then, is how much the strength of the field changes ...
Question about the chain rule.
https://math.stackexchange.com/q/2940216
Suppose we add an infinitesimal to x : x_1=x_0+\Delta x . What happens to y ? By definition, the derivative tells us how much a function changes relative to changes in its input: the change ...
Spectrum of the derivative operator
https://math.stackexchange.com/questions/2117107/spectrum-of-the-derivative-operator
\newcommand{\id}{I} As it was mentioned in the comments, the domain where you defined the operator is not correct - If you take C^1-functions with derivatives in L^2 the domain will be "too ...
Higit pang mga Mga Item
Ibahagi
Kopyahin
Kinopya sa clipboard
Katulad na mga Problema
\frac { d } { d x } ( 2 )
\frac { d } { d x } ( 4 x )
\frac { d } { d x } ( 6 x ^ 2 )
\frac { d } { d x } ( 3x+7 )
\frac { d } { d a } ( 6a ( a -2) )
\frac { d } { d z } ( \frac{z+3}{2z-4} )
Bumalik sa itaas