I-differentiate ang w.r.t. y
\frac{14}{15\sqrt[15]{y}}
I-evaluate
y^{\frac{14}{15}}
Graph
Ibahagi
Kinopya sa clipboard
\sqrt[3]{y}\frac{\mathrm{d}}{\mathrm{d}y}(y^{\frac{3}{5}})+y^{\frac{3}{5}}\frac{\mathrm{d}}{\mathrm{d}y}(\sqrt[3]{y})
Para sa anumang dalawang madi-differentiate na function, ang derivative ng product ng dalawang function ay ang unang function times ang derivative ng pangalawa plus ang pangalawang function times ang derivative ng una.
\sqrt[3]{y}\times \frac{3}{5}y^{\frac{3}{5}-1}+y^{\frac{3}{5}}\times \frac{1}{3}y^{\frac{1}{3}-1}
Ang derivative ng isang polynomial ay ang kabuuan ng mga derivative ng mga term nito. Ang derivative ng anumang constant term ay 0. Ang derivative ng ax^{n} ay nax^{n-1}.
\sqrt[3]{y}\times \frac{3}{5}y^{-\frac{2}{5}}+y^{\frac{3}{5}}\times \frac{1}{3}y^{-\frac{2}{3}}
Pasimplehin.
\frac{3}{5}y^{\frac{1}{3}-\frac{2}{5}}+\frac{1}{3}y^{\frac{3}{5}-\frac{2}{3}}
Para i-multiply ang mga power ng parehong base, idagdag ang mga exponent nito.
\frac{3}{5}y^{-\frac{1}{15}}+\frac{1}{3}y^{-\frac{1}{15}}
Pasimplehin.
y^{\frac{14}{15}}
Para mag-multiply ng mga power na may parehong base, i-add ang mga exponent ng mga ito. I-add ang \frac{1}{3} at \frac{3}{5} para makuha ang \frac{14}{15}.
Mga Halimbawa
Ekwasyong kwadratiko
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwasyon na linyar
y = 3x + 4
Aritmetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sabay sabay na equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pagkakaiba iba
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pagsasama sama
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mga Limitasyon
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}