Laktawan sa pangunahing nilalaman
I-solve ang x
Tick mark Image
I-solve ang y
Tick mark Image

Ibahagi

2xy=\left(-1+\sqrt{3}\right)\times \frac{-1-\sqrt{5i}}{2}
I-multiply ang magkabilang dulo ng equation gamit ang 2.
2xy=-\frac{-1-\sqrt{5i}}{2}+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
Gamitin ang distributive property para i-multiply ang -1+\sqrt{3} gamit ang \frac{-1-\sqrt{5i}}{2}.
2xy=-\left(-\frac{1}{2}-\frac{1}{2}\sqrt{5i}\right)+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
Hati-hatiin ang bawat termino ng -1-\sqrt{5i} sa 2 para makuha ang -\frac{1}{2}-\frac{1}{2}\sqrt{5i}.
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
Para hanapin ang kabaligtaran ng -\frac{1}{2}-\frac{1}{2}\sqrt{5i}, hanapin ang kabaligtaran ng bawat term.
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}+\sqrt{3}\left(-\frac{1}{2}-\frac{1}{2}\sqrt{5i}\right)
Hati-hatiin ang bawat termino ng -1-\sqrt{5i} sa 2 para makuha ang -\frac{1}{2}-\frac{1}{2}\sqrt{5i}.
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}-\frac{1}{2}\sqrt{3}-\frac{1}{2}\sqrt{3}\sqrt{5i}
Gamitin ang distributive property para i-multiply ang \sqrt{3} gamit ang -\frac{1}{2}-\frac{1}{2}\sqrt{5i}.
2yx=\frac{-\sqrt{3}\sqrt{5i}+\sqrt{5i}+1-\sqrt{3}}{2}
Ang equation ay nasa standard form.
\frac{2yx}{2y}=\frac{\sqrt{10}\left(\frac{1}{4}+\frac{1}{4}i\right)+\sqrt{30}\left(-\frac{1}{4}-\frac{1}{4}i\right)-\frac{\sqrt{3}}{2}+\frac{1}{2}}{2y}
I-divide ang magkabilang dulo ng equation gamit ang 2y.
x=\frac{\sqrt{10}\left(\frac{1}{4}+\frac{1}{4}i\right)+\sqrt{30}\left(-\frac{1}{4}-\frac{1}{4}i\right)-\frac{\sqrt{3}}{2}+\frac{1}{2}}{2y}
Kapag na-divide gamit ang 2y, ma-a-undo ang multiplication gamit ang 2y.
x=\frac{\sqrt{10}\left(1+i\right)+\sqrt{30}\left(-1-i\right)+2-2\sqrt{3}}{8y}
I-divide ang \frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{10}-\frac{\sqrt{3}}{2}+\left(-\frac{1}{4}-\frac{1}{4}i\right)\sqrt{30} gamit ang 2y.
2xy=\left(-1+\sqrt{3}\right)\times \frac{-1-\sqrt{5i}}{2}
I-multiply ang magkabilang dulo ng equation gamit ang 2.
2xy=-\frac{-1-\sqrt{5i}}{2}+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
Gamitin ang distributive property para i-multiply ang -1+\sqrt{3} gamit ang \frac{-1-\sqrt{5i}}{2}.
2xy=-\left(-\frac{1}{2}-\frac{1}{2}\sqrt{5i}\right)+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
Hati-hatiin ang bawat termino ng -1-\sqrt{5i} sa 2 para makuha ang -\frac{1}{2}-\frac{1}{2}\sqrt{5i}.
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}+\sqrt{3}\times \frac{-1-\sqrt{5i}}{2}
Para hanapin ang kabaligtaran ng -\frac{1}{2}-\frac{1}{2}\sqrt{5i}, hanapin ang kabaligtaran ng bawat term.
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}+\sqrt{3}\left(-\frac{1}{2}-\frac{1}{2}\sqrt{5i}\right)
Hati-hatiin ang bawat termino ng -1-\sqrt{5i} sa 2 para makuha ang -\frac{1}{2}-\frac{1}{2}\sqrt{5i}.
2xy=\frac{1}{2}+\frac{1}{2}\sqrt{5i}-\frac{1}{2}\sqrt{3}-\frac{1}{2}\sqrt{3}\sqrt{5i}
Gamitin ang distributive property para i-multiply ang \sqrt{3} gamit ang -\frac{1}{2}-\frac{1}{2}\sqrt{5i}.
2xy=\frac{-\sqrt{3}\sqrt{5i}+\sqrt{5i}+1-\sqrt{3}}{2}
Ang equation ay nasa standard form.
\frac{2xy}{2x}=\frac{\sqrt{10}\left(\frac{1}{4}+\frac{1}{4}i\right)+\sqrt{30}\left(-\frac{1}{4}-\frac{1}{4}i\right)-\frac{\sqrt{3}}{2}+\frac{1}{2}}{2x}
I-divide ang magkabilang dulo ng equation gamit ang 2x.
y=\frac{\sqrt{10}\left(\frac{1}{4}+\frac{1}{4}i\right)+\sqrt{30}\left(-\frac{1}{4}-\frac{1}{4}i\right)-\frac{\sqrt{3}}{2}+\frac{1}{2}}{2x}
Kapag na-divide gamit ang 2x, ma-a-undo ang multiplication gamit ang 2x.
y=\frac{\sqrt{10}\left(1+i\right)+\sqrt{30}\left(-1-i\right)+2-2\sqrt{3}}{8x}
I-divide ang \frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{10}-\frac{\sqrt{3}}{2}+\left(-\frac{1}{4}-\frac{1}{4}i\right)\sqrt{30} gamit ang 2x.