I-solve ang x (complex solution)
x\in e^{\frac{\pi i}{7}}\sqrt[14]{1-y^{4}},\sqrt[14]{1-y^{4}},e^{\frac{2i\pi }{7}}\sqrt[14]{1-y^{4}},e^{\frac{3i\pi }{7}}\sqrt[14]{1-y^{4}},e^{\frac{4i\pi }{7}}\sqrt[14]{1-y^{4}},e^{\frac{5i\pi }{7}}\sqrt[14]{1-y^{4}},e^{\frac{6i\pi }{7}}\sqrt[14]{1-y^{4}},-\sqrt[14]{1-y^{4}},e^{\frac{8i\pi }{7}}\sqrt[14]{1-y^{4}},e^{\frac{9i\pi }{7}}\sqrt[14]{1-y^{4}},e^{\frac{10i\pi }{7}}\sqrt[14]{1-y^{4}},e^{\frac{11i\pi }{7}}\sqrt[14]{1-y^{4}},e^{\frac{12i\pi }{7}}\sqrt[14]{1-y^{4}},e^{\frac{13i\pi }{7}}\sqrt[14]{1-y^{4}}
I-solve ang y (complex solution)
y=i\sqrt[4]{1-x^{14}}
y=\sqrt[4]{1-x^{14}}
y=-\sqrt[4]{1-x^{14}}
y=-i\sqrt[4]{1-x^{14}}
I-solve ang x
x=\sqrt[14]{1-y^{4}}
x=-\sqrt[14]{1-y^{4}}\text{, }|y|\leq 1
I-solve ang y
\left\{\begin{matrix}y=\sqrt{-\sqrt{1-x^{14}}}\text{; }y=-\sqrt{-\sqrt{1-x^{14}}}\text{, }&|x|=1\\y=\sqrt[4]{1-x^{14}}\text{; }y=-\sqrt[4]{1-x^{14}}\text{, }&|x|\leq 1\end{matrix}\right.
Graph
Ibahagi
Kinopya sa clipboard
Mga Halimbawa
Ekwasyong kwadratiko
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwasyon na linyar
y = 3x + 4
Aritmetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sabay sabay na equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pagkakaiba iba
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pagsasama sama
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mga Limitasyon
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}