Laktawan sa pangunahing nilalaman
I-evaluate
Tick mark Image
Palawakin
Tick mark Image

Katulad na mga Problema mula sa Web Search

Ibahagi

t\times \frac{4\times 1}{5\times 2}\left(30-4t\right)
I-multiply ang \frac{4}{5} sa \frac{1}{2} sa pamamagitan ng pag-multiply ng numerator sa numerator at denominator sa denominator.
t\times \frac{4}{10}\left(30-4t\right)
Gawin ang mga multiplication sa fraction na \frac{4\times 1}{5\times 2}.
t\times \frac{2}{5}\left(30-4t\right)
Bawasan ang fraction \frac{4}{10} sa pinakamabababang term sa pamamagitan ng pag-extract at pag-cancel out sa 2.
t\times \frac{2}{5}\times 30+t\times \frac{2}{5}\left(-4\right)t
Gamitin ang distributive property para i-multiply ang t\times \frac{2}{5} gamit ang 30-4t.
t\times \frac{2}{5}\times 30+t^{2}\times \frac{2}{5}\left(-4\right)
I-multiply ang t at t para makuha ang t^{2}.
t\times \frac{2\times 30}{5}+t^{2}\times \frac{2}{5}\left(-4\right)
Ipakita ang \frac{2}{5}\times 30 bilang isang single fraction.
t\times \frac{60}{5}+t^{2}\times \frac{2}{5}\left(-4\right)
I-multiply ang 2 at 30 para makuha ang 60.
t\times 12+t^{2}\times \frac{2}{5}\left(-4\right)
I-divide ang 60 gamit ang 5 para makuha ang 12.
t\times 12+t^{2}\times \frac{2\left(-4\right)}{5}
Ipakita ang \frac{2}{5}\left(-4\right) bilang isang single fraction.
t\times 12+t^{2}\times \frac{-8}{5}
I-multiply ang 2 at -4 para makuha ang -8.
t\times 12+t^{2}\left(-\frac{8}{5}\right)
Maaaring maisulat muli ang fraction na \frac{-8}{5} bilang -\frac{8}{5} sa pamamagitan ng pag-extract sa negative sign.
t\times \frac{4\times 1}{5\times 2}\left(30-4t\right)
I-multiply ang \frac{4}{5} sa \frac{1}{2} sa pamamagitan ng pag-multiply ng numerator sa numerator at denominator sa denominator.
t\times \frac{4}{10}\left(30-4t\right)
Gawin ang mga multiplication sa fraction na \frac{4\times 1}{5\times 2}.
t\times \frac{2}{5}\left(30-4t\right)
Bawasan ang fraction \frac{4}{10} sa pinakamabababang term sa pamamagitan ng pag-extract at pag-cancel out sa 2.
t\times \frac{2}{5}\times 30+t\times \frac{2}{5}\left(-4\right)t
Gamitin ang distributive property para i-multiply ang t\times \frac{2}{5} gamit ang 30-4t.
t\times \frac{2}{5}\times 30+t^{2}\times \frac{2}{5}\left(-4\right)
I-multiply ang t at t para makuha ang t^{2}.
t\times \frac{2\times 30}{5}+t^{2}\times \frac{2}{5}\left(-4\right)
Ipakita ang \frac{2}{5}\times 30 bilang isang single fraction.
t\times \frac{60}{5}+t^{2}\times \frac{2}{5}\left(-4\right)
I-multiply ang 2 at 30 para makuha ang 60.
t\times 12+t^{2}\times \frac{2}{5}\left(-4\right)
I-divide ang 60 gamit ang 5 para makuha ang 12.
t\times 12+t^{2}\times \frac{2\left(-4\right)}{5}
Ipakita ang \frac{2}{5}\left(-4\right) bilang isang single fraction.
t\times 12+t^{2}\times \frac{-8}{5}
I-multiply ang 2 at -4 para makuha ang -8.
t\times 12+t^{2}\left(-\frac{8}{5}\right)
Maaaring maisulat muli ang fraction na \frac{-8}{5} bilang -\frac{8}{5} sa pamamagitan ng pag-extract sa negative sign.