Laktawan sa pangunahing nilalaman
I-factor
Tick mark Image
I-evaluate
Tick mark Image

Katulad na mga Problema mula sa Web Search

Ibahagi

9\left(-p^{2}+2p\right)
I-factor out ang 9.
p\left(-p+2\right)
Isaalang-alang ang -p^{2}+2p. I-factor out ang p.
9p\left(-p+2\right)
I-rewrite ang kumpletong naka-factor na expression.
-9p^{2}+18p=0
Maaaring i-factor ang quadratic polynomial gamit ang transformation na ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kung saan ang x_{1} at x_{2} ay ang mga solution ng quadratic equation na ax^{2}+bx+c=0.
p=\frac{-18±\sqrt{18^{2}}}{2\left(-9\right)}
Ang lahat ng equation na may anyong ax^{2}+bx+c=0 ay maaaring lutasin gamit ang quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ang quadratic formula ay nagbibigay ng dalawang solution, isa kapag ang ± ay addition at isa kapag ito ay subtraction.
p=\frac{-18±18}{2\left(-9\right)}
Kunin ang square root ng 18^{2}.
p=\frac{-18±18}{-18}
I-multiply ang 2 times -9.
p=\frac{0}{-18}
Ngayon, lutasin ang equation na p=\frac{-18±18}{-18} kapag ang ± ay plus. Idagdag ang -18 sa 18.
p=0
I-divide ang 0 gamit ang -18.
p=-\frac{36}{-18}
Ngayon, lutasin ang equation na p=\frac{-18±18}{-18} kapag ang ± ay minus. I-subtract ang 18 mula sa -18.
p=2
I-divide ang -36 gamit ang -18.
-9p^{2}+18p=-9p\left(p-2\right)
I-factor ang orihinal na expression gamit ang ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). I-substitute ang 0 sa x_{1} at ang 2 sa x_{2}.