I-solve ang t
t=\ln(9332636185032188789900895447238171696170914463717080246217143397959669109757756344544403270978811023595949899303242426242154875213540323948415208172039307562344106661383251502739950759859018315111004.90796265113118240512514795933790805178271125415103810698378854426481119469814228660959222017662910442798456169448887147466528006328368452647429261829862165202793195289493607117850663668741065439805530718136320599844826041954101213229629869502194514609904214608668361244792952034826864617657926916047420065936389041737895822118365078045556628444273925387517127854796781556346403714877681766899855392069265439424008711973674701749862626690747296762535803929376233833981046927874558605253696441650390625)
I-solve ang t (complex solution)
t=-i\times 1000\pi n_{1}+\ln(9332636185032188789900895447238171696170914463717080246217143397959669109757756344544403270978811023595949899303242426242154875213540323948415208172039307562344106661383251502739950759859018315111004.90796265113118240512514795933790805178271125415103810698378854426481119469814228660959222017662910442798456169448887147466528006328368452647429261829862165202793195289493607117850663668741065439805530718136320599844826041954101213229629869502194514609904214608668361244792952034826864617657926916047420065936389041737895822118365078045556628444273925387517127854796781556346403714877681766899855392069265439424008711973674701749862626690747296762535803929376233833981046927874558605253696441650390625)
n_{1}\in \mathrm{Z}
Ibahagi
Kinopya sa clipboard
\frac{30}{75}=e^{-0.002t}
I-divide ang magkabilang dulo ng equation gamit ang 75.
\frac{2}{5}=e^{-0.002t}
Bawasan ang fraction \frac{30}{75} sa pinakamabababang term sa pamamagitan ng pag-extract at pag-cancel out sa 15.
e^{-0.002t}=\frac{2}{5}
Pagpalitin ang magkabilang panig para nasa kaliwang bahagi ang lahat ng variable na term.
\log(e^{-0.002t})=\log(\frac{2}{5})
Kunin ang logarithm ng magkabilang dulo ng equation.
-0.002t\log(e)=\log(\frac{2}{5})
Ang logarithm ng isang numero na na-raise sa isang power ay ang power times ang logarithm ng numero.
-0.002t=\frac{\log(\frac{2}{5})}{\log(e)}
I-divide ang magkabilang dulo ng equation gamit ang \log(e).
-0.002t=\log_{e}\left(\frac{2}{5}\right)
Gamit ang change-of-base formula na \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
t=\frac{\ln(\frac{2}{5})}{-0.002}
I-multiply ang magkabilang dulo ng equation gamit ang -500.
Mga Halimbawa
Ekwasyong kwadratiko
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwasyon na linyar
y = 3x + 4
Aritmetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sabay sabay na equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pagkakaiba iba
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pagsasama sama
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mga Limitasyon
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}