I-evaluate
4+5x-5x^{2}
I-factor
-5\left(x-\left(-\frac{\sqrt{105}}{10}+\frac{1}{2}\right)\right)\left(x-\left(\frac{\sqrt{105}}{10}+\frac{1}{2}\right)\right)
Graph
Ibahagi
Kinopya sa clipboard
-5x^{2}-2+6+5x
Pagsamahin ang 3x^{2} at -8x^{2} para makuha ang -5x^{2}.
-5x^{2}+4+5x
Idagdag ang -2 at 6 para makuha ang 4.
factor(-5x^{2}-2+6+5x)
Pagsamahin ang 3x^{2} at -8x^{2} para makuha ang -5x^{2}.
factor(-5x^{2}+4+5x)
Idagdag ang -2 at 6 para makuha ang 4.
-5x^{2}+5x+4=0
Maaaring i-factor ang quadratic polynomial gamit ang transformation na ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kung saan ang x_{1} at x_{2} ay ang mga solution ng quadratic equation na ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\left(-5\right)\times 4}}{2\left(-5\right)}
Ang lahat ng equation na may anyong ax^{2}+bx+c=0 ay maaaring lutasin gamit ang quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ang quadratic formula ay nagbibigay ng dalawang solution, isa kapag ang ± ay addition at isa kapag ito ay subtraction.
x=\frac{-5±\sqrt{25-4\left(-5\right)\times 4}}{2\left(-5\right)}
I-square ang 5.
x=\frac{-5±\sqrt{25+20\times 4}}{2\left(-5\right)}
I-multiply ang -4 times -5.
x=\frac{-5±\sqrt{25+80}}{2\left(-5\right)}
I-multiply ang 20 times 4.
x=\frac{-5±\sqrt{105}}{2\left(-5\right)}
Idagdag ang 25 sa 80.
x=\frac{-5±\sqrt{105}}{-10}
I-multiply ang 2 times -5.
x=\frac{\sqrt{105}-5}{-10}
Ngayon, lutasin ang equation na x=\frac{-5±\sqrt{105}}{-10} kapag ang ± ay plus. Idagdag ang -5 sa \sqrt{105}.
x=-\frac{\sqrt{105}}{10}+\frac{1}{2}
I-divide ang -5+\sqrt{105} gamit ang -10.
x=\frac{-\sqrt{105}-5}{-10}
Ngayon, lutasin ang equation na x=\frac{-5±\sqrt{105}}{-10} kapag ang ± ay minus. I-subtract ang \sqrt{105} mula sa -5.
x=\frac{\sqrt{105}}{10}+\frac{1}{2}
I-divide ang -5-\sqrt{105} gamit ang -10.
-5x^{2}+5x+4=-5\left(x-\left(-\frac{\sqrt{105}}{10}+\frac{1}{2}\right)\right)\left(x-\left(\frac{\sqrt{105}}{10}+\frac{1}{2}\right)\right)
I-factor ang orihinal na expression gamit ang ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). I-substitute ang \frac{1}{2}-\frac{\sqrt{105}}{10} sa x_{1} at ang \frac{1}{2}+\frac{\sqrt{105}}{10} sa x_{2}.
Mga Halimbawa
Ekwasyong kwadratiko
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwasyon na linyar
y = 3x + 4
Aritmetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sabay sabay na equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pagkakaiba iba
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pagsasama sama
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mga Limitasyon
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}