Laktawan sa pangunahing nilalaman
I-factor
Tick mark Image
I-evaluate
Tick mark Image
Graph

Katulad na mga Problema mula sa Web Search

Ibahagi

a+b=-14 ab=3\left(-5\right)=-15
I-factor ang expression ayon sa grouping. Dapat munang isulat ang expression bilang 3x^{2}+ax+bx-5. Para mahanap ang a at b, mag-set up ng system na iso-solve.
1,-15 3,-5
Dahil negative ang ab, magkasalungat ang mga sign ng a at b. Dahil negative ang a+b, mas malaki ang absolute value ng negative na numero kaysa sa positive. Ilista ang lahat ng naturang pares ng integer na magbibigay ng product na -15.
1-15=-14 3-5=-2
Kalkulahin ang sum para sa bawat pares.
a=-15 b=1
Ang solution ay ang pair na may sum na -14.
\left(3x^{2}-15x\right)+\left(x-5\right)
I-rewrite ang 3x^{2}-14x-5 bilang \left(3x^{2}-15x\right)+\left(x-5\right).
3x\left(x-5\right)+x-5
Ï-factor out ang 3x sa 3x^{2}-15x.
\left(x-5\right)\left(3x+1\right)
I-factor out ang common term na x-5 gamit ang distributive property.
3x^{2}-14x-5=0
Maaaring i-factor ang quadratic polynomial gamit ang transformation na ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kung saan ang x_{1} at x_{2} ay ang mga solution ng quadratic equation na ax^{2}+bx+c=0.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 3\left(-5\right)}}{2\times 3}
Ang lahat ng equation na may anyong ax^{2}+bx+c=0 ay maaaring lutasin gamit ang quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ang quadratic formula ay nagbibigay ng dalawang solution, isa kapag ang ± ay addition at isa kapag ito ay subtraction.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 3\left(-5\right)}}{2\times 3}
I-square ang -14.
x=\frac{-\left(-14\right)±\sqrt{196-12\left(-5\right)}}{2\times 3}
I-multiply ang -4 times 3.
x=\frac{-\left(-14\right)±\sqrt{196+60}}{2\times 3}
I-multiply ang -12 times -5.
x=\frac{-\left(-14\right)±\sqrt{256}}{2\times 3}
Idagdag ang 196 sa 60.
x=\frac{-\left(-14\right)±16}{2\times 3}
Kunin ang square root ng 256.
x=\frac{14±16}{2\times 3}
Ang kabaliktaran ng -14 ay 14.
x=\frac{14±16}{6}
I-multiply ang 2 times 3.
x=\frac{30}{6}
Ngayon, lutasin ang equation na x=\frac{14±16}{6} kapag ang ± ay plus. Idagdag ang 14 sa 16.
x=5
I-divide ang 30 gamit ang 6.
x=-\frac{2}{6}
Ngayon, lutasin ang equation na x=\frac{14±16}{6} kapag ang ± ay minus. I-subtract ang 16 mula sa 14.
x=-\frac{1}{3}
Bawasan ang fraction \frac{-2}{6} sa pinakamabababang term sa pamamagitan ng pag-extract at pag-cancel out sa 2.
3x^{2}-14x-5=3\left(x-5\right)\left(x-\left(-\frac{1}{3}\right)\right)
I-factor ang orihinal na expression gamit ang ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). I-substitute ang 5 sa x_{1} at ang -\frac{1}{3} sa x_{2}.
3x^{2}-14x-5=3\left(x-5\right)\left(x+\frac{1}{3}\right)
Pasimplehin ang lahat ng expression ng form na p-\left(-q\right) at gawing p+q.
3x^{2}-14x-5=3\left(x-5\right)\times \frac{3x+1}{3}
Idagdag ang \frac{1}{3} sa x sa pamamagitan ng paghahanap ng common denominator at pagdadagdag sa mga numerator. Pagkatapos ay ibawas ang fraction sa lowest terms nito kung posible.
3x^{2}-14x-5=\left(x-5\right)\left(3x+1\right)
Kanselahin ang greatest common factor na 3 sa 3 at 3.