I-solve ang x
x=-\frac{1}{3}\approx -0.333333333
x=-1
Graph
Ibahagi
Kinopya sa clipboard
3\left(x^{2}+2x+1\right)=2x+2
Gamitin ang binomial theorem na \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para palawakin ang \left(x+1\right)^{2}.
3x^{2}+6x+3=2x+2
Gamitin ang distributive property para i-multiply ang 3 gamit ang x^{2}+2x+1.
3x^{2}+6x+3-2x=2
I-subtract ang 2x mula sa magkabilang dulo.
3x^{2}+4x+3=2
Pagsamahin ang 6x at -2x para makuha ang 4x.
3x^{2}+4x+3-2=0
I-subtract ang 2 mula sa magkabilang dulo.
3x^{2}+4x+1=0
I-subtract ang 2 mula sa 3 para makuha ang 1.
a+b=4 ab=3\times 1=3
Para i-solve ang equation, i-factor ang kaliwang bahagi ayon sa grouping. Dapat munang isulat ang kaliwang bahagi bilang 3x^{2}+ax+bx+1. Para mahanap ang a at b, mag-set up ng system na iso-solve.
a=1 b=3
Dahil positive ang ab, magkapareho ang mga sign ng a at b. Dahil positive ang a+b, parehong positive ang a at b. Ang ganoon lang na pair ay ang system solution.
\left(3x^{2}+x\right)+\left(3x+1\right)
I-rewrite ang 3x^{2}+4x+1 bilang \left(3x^{2}+x\right)+\left(3x+1\right).
x\left(3x+1\right)+3x+1
Ï-factor out ang x sa 3x^{2}+x.
\left(3x+1\right)\left(x+1\right)
I-factor out ang common term na 3x+1 gamit ang distributive property.
x=-\frac{1}{3} x=-1
Para mahanap ang mga solution sa equation, i-solve ang 3x+1=0 at x+1=0.
3\left(x^{2}+2x+1\right)=2x+2
Gamitin ang binomial theorem na \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para palawakin ang \left(x+1\right)^{2}.
3x^{2}+6x+3=2x+2
Gamitin ang distributive property para i-multiply ang 3 gamit ang x^{2}+2x+1.
3x^{2}+6x+3-2x=2
I-subtract ang 2x mula sa magkabilang dulo.
3x^{2}+4x+3=2
Pagsamahin ang 6x at -2x para makuha ang 4x.
3x^{2}+4x+3-2=0
I-subtract ang 2 mula sa magkabilang dulo.
3x^{2}+4x+1=0
I-subtract ang 2 mula sa 3 para makuha ang 1.
x=\frac{-4±\sqrt{4^{2}-4\times 3}}{2\times 3}
Ang equation ay nasa standard form: ax^{2}+bx+c=0. I-substitute ang 3 para sa a, 4 para sa b, at 1 para sa c sa quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 3}}{2\times 3}
I-square ang 4.
x=\frac{-4±\sqrt{16-12}}{2\times 3}
I-multiply ang -4 times 3.
x=\frac{-4±\sqrt{4}}{2\times 3}
Idagdag ang 16 sa -12.
x=\frac{-4±2}{2\times 3}
Kunin ang square root ng 4.
x=\frac{-4±2}{6}
I-multiply ang 2 times 3.
x=-\frac{2}{6}
Ngayon, lutasin ang equation na x=\frac{-4±2}{6} kapag ang ± ay plus. Idagdag ang -4 sa 2.
x=-\frac{1}{3}
Bawasan ang fraction \frac{-2}{6} sa pinakamabababang term sa pamamagitan ng pag-extract at pag-cancel out sa 2.
x=-\frac{6}{6}
Ngayon, lutasin ang equation na x=\frac{-4±2}{6} kapag ang ± ay minus. I-subtract ang 2 mula sa -4.
x=-1
I-divide ang -6 gamit ang 6.
x=-\frac{1}{3} x=-1
Nalutas na ang equation.
3\left(x^{2}+2x+1\right)=2x+2
Gamitin ang binomial theorem na \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para palawakin ang \left(x+1\right)^{2}.
3x^{2}+6x+3=2x+2
Gamitin ang distributive property para i-multiply ang 3 gamit ang x^{2}+2x+1.
3x^{2}+6x+3-2x=2
I-subtract ang 2x mula sa magkabilang dulo.
3x^{2}+4x+3=2
Pagsamahin ang 6x at -2x para makuha ang 4x.
3x^{2}+4x=2-3
I-subtract ang 3 mula sa magkabilang dulo.
3x^{2}+4x=-1
I-subtract ang 3 mula sa 2 para makuha ang -1.
\frac{3x^{2}+4x}{3}=-\frac{1}{3}
I-divide ang magkabilang dulo ng equation gamit ang 3.
x^{2}+\frac{4}{3}x=-\frac{1}{3}
Kapag na-divide gamit ang 3, ma-a-undo ang multiplication gamit ang 3.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=-\frac{1}{3}+\left(\frac{2}{3}\right)^{2}
I-divide ang \frac{4}{3}, ang coefficient ng x term, gamit ang 2 para makuha ang \frac{2}{3}. Pagkatapos ay idagdag ang square ng \frac{2}{3} sa magkabilang panig ng equation. Kapag ginawa ang hakbang na ito, magiging perfect square ang kaliwang panig ng equation.
x^{2}+\frac{4}{3}x+\frac{4}{9}=-\frac{1}{3}+\frac{4}{9}
I-square ang \frac{2}{3} sa pamamagitan ng pagse-square sa numerator at denominator ng fraction.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{1}{9}
Idagdag ang -\frac{1}{3} sa \frac{4}{9} sa pamamagitan ng paghahanap ng common denominator at pagdadagdag sa mga numerator. Pagkatapos ay ibawas ang fraction sa lowest terms nito kung posible.
\left(x+\frac{2}{3}\right)^{2}=\frac{1}{9}
I-factor ang x^{2}+\frac{4}{3}x+\frac{4}{9}. Sa pangkalahatan, kapag ang x^{2}+bx+c ay perfect square, maaari itong palaging i-factor bilang \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Kunin ang square root ng magkabilang dulo ng equation.
x+\frac{2}{3}=\frac{1}{3} x+\frac{2}{3}=-\frac{1}{3}
Pasimplehin.
x=-\frac{1}{3} x=-1
I-subtract ang \frac{2}{3} mula sa magkabilang dulo ng equation.
Mga Halimbawa
Ekwasyong kwadratiko
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwasyon na linyar
y = 3x + 4
Aritmetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sabay sabay na equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pagkakaiba iba
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pagsasama sama
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mga Limitasyon
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}